The best time of stem cells transplantation for treating acute myocardial infarction (AMI) is still to be followed with interest and a focus issue for clinical cardiologist. A brief meta-analysis of clinical trials ab...The best time of stem cells transplantation for treating acute myocardial infarction (AMI) is still to be followed with interest and a focus issue for clinical cardiologist. A brief meta-analysis of clinical trials about timing-window and therapeutic effects of stem cell transplantation for treating AMI will be made out in this article.展开更多
Objectives Bone-marrow stem-cell transplantation has been shown to improve cardiac function in patients with acute myocardial infarction (AMI) , but the safety of intracoronory infusion of autologous peripheral blood ...Objectives Bone-marrow stem-cell transplantation has been shown to improve cardiac function in patients with acute myocardial infarction (AMI) , but the safety of intracoronory infusion of autologous peripheral blood stem-cell (PBSCs) in patients with AMI is unknown. For this reason, we observe the feasibility and safety of PBSCs transplantation by intracoronory infusion in such patients. Methods 41 patients with AMI were allocated to receive granulocyte colony-stimulating factor (G- CSF: Filgrastim,300μg) with the dose of 300μg~ 600μg/day to mobilize the stem cell, and the duration of applying G-CSF was 5 days. On the sixth day, PBSCs were separated by Baxter CS 3000 blood cel 1 separator into suspend liquid 57 ml. Then the suspend liquid was infused into the infarct related artery (IRA) by occluding the over the wire balloon and infusing artery through balloon center lumen. In the process of the intracoronary infusion of PBSCs, the complications should be observed, which were arrhythmias including of bradycardia, sinus arrest or atrial ventricular block, premature ve. ntricular beats ,ven~icular tachycardia, ventricular fibrillation; and hypotention, etc. Results There were total 10 cases with complications during the intracoronary infusion of PBSCs. The incidence of complications was 24.4% (10/41), including bradyca- rdia was 2.4 % (1/41), sinus arrest or atrial ventri- cular block was 4.0% (2/41), ventricular fibrillation was 2.4 % (1/41), hypotention was 14.6 % (6/41). Conclusions In patients with AMI, intracoronary infusion of PBSCs is feasible and safe.展开更多
Background:Bone marrow mesenchymal stem cell (MSC) transplantation is a promising strategy in the treatment of myocardial infarction (MI). However, the time for transplanting cells remains controversial. The aim of th...Background:Bone marrow mesenchymal stem cell (MSC) transplantation is a promising strategy in the treatment of myocardial infarction (MI). However, the time for transplanting cells remains controversial. The aim of this study was to find an optimal time point for cell transplantation. Methods: MSCs were isolated and cultured from Sprague-Dawley (SD) rats. MI model was set up in SD rats by permanent ligation of left anterior descending coronary artery. MSCs were directly injected into the infarct border zone at 1 h, 1 week and 2 weeks after MI, respectively. Sham-operated and MI control groups received equal volume of phosphate buffered saline (PBS). At 4 weeks after MI, cardiac function was assessed by echocardiography; vessel density was analyzed on hematoxylin-eosin stained slides by light microscopy; the apoptosis of cardiomyocytes was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay; the expressions of proteins were analyzed by Western blot. Results: MSC transplantation improved cardiac function, reduced the apoptosis of cardiomyocytes and increased vessel density. These benefits were more obvious in 1-week group than in 1-h and 2-week groups. There are more obvious in-creases in the ratio of bcl-2/bax and the expression of vascular endothelial growth factor (VEGF) and more obvious decreases in the expression of cleaved-caspase-3 in 1-week group than those in other two groups. Conclusion: MSC transplantation was beneficial for the recovery of cardiac function. MSC transplantation at 1 week post-MI exerted the best effects on increases of cardiac function, anti-apoptosis and angiogenesis.展开更多
Objective: This study was performed to evaluate whether implantation of mesenchymal stem cell (MSC) would reduce left ventricular remodelling from the molecular mechanisms compared with angiotensin-converting enzyme i...Objective: This study was performed to evaluate whether implantation of mesenchymal stem cell (MSC) would reduce left ventricular remodelling from the molecular mechanisms compared with angiotensin-converting enzyme inhibitors (ACEIs) perindopril into ischemic myocardium after acute myocardial infarction. Methods: Forty rats were divided into four groups: control, MSC, ACEI, MSC+ACEI groups. Bone marrow stem cell derived rat was injected immediately into a zone made ischemic by coronary artery ligation in MSC group and MSC+ACEI group. Phosphate-buffered saline (PBS) was injected into control group. Perindopril was administered p.o. to ACEI group and MSC+ACEI group. Six weeks after implantation, the rats were killed and heart sample was collected. Fibrillar collagen was observed by meliorative Masson’s trichome stain. Western Blotting was employed to evaluate the protein expression of matrix metalloproteinase (MMP)-2, matrix metalloproteinase (MMP)-9 in infarction zone. The transcriptional level of MMP2, MMP9 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in infarction area was detected by reverse transcriptase PCR (RT-PCR) analysis. Results: The fibrillar collagen area, the protein expression of MMP2, MMP9 and the transcriptional level of MMP2, MMP9 mRNA in infarction zone reduced in MSC group, ACEI group, and MSC+ACEI group. No significant difference was detected in the expression of TIMP1 mRNA among the 4 groups. Conclusion: Both MSC and ACEI could reduce infarction remodelling by altering collagen metabolism.展开更多
Objective:To investigate the effects ofQishengyiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice after myocardial infarction through in vitro ce...Objective:To investigate the effects ofQishengyiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice after myocardial infarction through in vitro cell molecular biology experiments.Methods:The animals used in this experiment were male mice with eGFP+/-.Sixty mice were randomly divided into three groups(n=20):myocardial infarction group(MI+PBS),myocardial infarction+mesenchyme plasma stem cell transplantation group(MI+MSCs)and myocardial infarction+Qishenyiqi drip pill combined with mesenchymal stem cell transplantation group(MI+MSCs+QSYQ).Qishenyiqi dripping pills were prepared into a medicinal solution with a concentration of 3.9 mg/mL with distilled water.The MI+MSCs+QSYQ group was orally administered with 0.1 mL/kg/day,and the other two groups were orally administered with an equal amount of normal saline.Mice in each group were adaptively fed continuously for 2 weeks,and the myocardial infarction model was established by ligation of the anterior descending coronary artery by thoracic ligation.Twenty-four hours after the model was established,bone marrow mesenchymal stem cells were isolated from the tibia of the mice and injected intracardiacly Bone marrow-derived mesenchymal stem cells were transplanted,and multiple injections were made around the myocardial infarction area of mice.The control group was injected with the same amount of PBS.0h,3 days,7 days,and 14 days after cell transplantation,observe the stem cell morphology under a microscope;on day 7 of cell transplantation,track the expression of eGFP-positive cells with a fluorescence microscope;before modeling,14 and 21 days after cell transplantation,use Cardiac function was measured by echocardiography.After 21 days of modeling,the mice were sacrificed,and heart samples were taken.The angiogenesis of the mice was observed by immunohistochemical staining and microvascular density determination.Results:The morphological growth of transplanted stem cells was proportional to the time of cell transplantation.Compared with MI+PBS group,CD90.2 and y6A were highly expressed on the surface of bone marrow mesenchymal stem cells in MI+MSCs group and MI+MSCs+QSYQ group,while CD31 and CD117 were almost not expressed.On the 21st day after stem cell transplantation,the values of LVDd and LVSD in MI+MSCs+QSYQ group were significantly lower than those in MI+PBS group and MI+MSCs group.At the same time,LVEF and LVFS increased significantly.The results of quantitative immunohistochemical analysis showed that the angiogenesis density in the MI+MSCs+QSYQ group increased significantly,and the difference between the groups was statistically significant(P<0.05).Conclusion:Qishen Yiqi dripping pills combined with bone marrow mesenchymal stem cell transplantation can not only promote angiogenesis in mice with myocardial infarction,but also play a positive role in improving cardiac function.展开更多
To probe into the influence of transplantation of allogenic bone marrow mononuclear cells (BM-MNCs) on the left ventricular remodeling of rat after acute myocardial infarction (AMI), 60 male Wistar rats were evenl...To probe into the influence of transplantation of allogenic bone marrow mononuclear cells (BM-MNCs) on the left ventricular remodeling of rat after acute myocardial infarction (AMI), 60 male Wistar rats were evenly divided into three groups at random: control group 1, control group 2 and transplantation group. In control group 1, chest was opened without ligation of coronary artery; in control group 2 and transplantation group, the left anterior descending branch of coronary artery was ligated to establish AMI model. Prepared culture medium and allogenic BM-MNCs suspension were respectively implanted the surrounding area of infracted cardiac muscle via epicardium of control group 2 and transplantation group. Four weeks after the operation, the osteopontin gene (OPN mRNA, P〈0.01), type Ⅰ collagen (P〈0.01) and angiotensin Ⅱ (AngⅡ, P〈0.01) content in the left ventricular non-infracted myocardium, and the Ang Ⅱ density in blood plasma (P〈0.05) of transplantation group and control group 2 were all significantly higher than that of control group Ⅰ. In the transplantation group, the myocardial OPN InRNA, type Ⅰ collagen and Ang Ⅱ content of non-infracted zone in left ventricle, and the Ang Ⅱ concentration in blood plasma were all significantly lower than those of control group 2 (P〈0.05 for all). It is concluded that allogenic BM-MNCs transplantation may ease left ventricular remodeling after AMI by inhibiting the synthesis of type Ⅰ collagen in the cardiac muscle and down-regulating the expression of Ang Ⅱ and OPN gene.展开更多
BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells c...BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells can be used in the treatment of acute myocardial infarction(Ml).This study aimed to investigate the effect of intravenous and epicardial transplantion of BMSCs on myocardial infarction size in a rabbit model.METHODS:A total of 60 New Zealand rabbits were randomly divided into three groups:control group,epicardium group(group Ⅰ) and ear vein group(group Ⅱ).The BMSCs were collected from the tibial plateau in group Ⅰ and group Ⅱ,cultured and labeled.In the three groups,rabbits underwent thoracotomy and ligation of the middle left anterior descending artery.The elevation of ST segment>0.2 mV lasting for 30 minutes on the lead Ⅱ and Ⅲ of electrocardiogram suggested successful introduction of myocardial infarction.Two weeks after myocardial infarction,rabbits in group Ⅰ were treated with autogenous BMSCs at the infarct region and those in group Ⅱ received intravenous transplantation of BMSCs.In the control group,rabbits were treated with PBS following thoracotomy.Four weeks after myocardial infarction,the heart was collected from all rabbits and the infarct size was calculated.The heart was cut into sections followed by HE staining and calculation of infarct size with an image system.RESULTS:In groups Ⅰ and Ⅱ,the infarct size was significantly reduced after transplantation with BMSCs when compared with the control group(P<0.05).However,there was no significant difference in the infarct size between groups Ⅰ and Ⅱ(P>0.05).CONCLUSION:Transplantation of BMSCs has therapeutic effect on Ml.Moreover,epicardial and intravenous transplantation of BMSCs has comparable therapeutic efficacy on myocardial infarction.展开更多
Objective To investigate the short- and long-term therapeutic efficacies of intravenous transplantation of bone marrow stem cells(MSCs) in rats with experimental myocardial infarction by metaanalysis.Methods Randomize...Objective To investigate the short- and long-term therapeutic efficacies of intravenous transplantation of bone marrow stem cells(MSCs) in rats with experimental myocardial infarction by metaanalysis.Methods Randomized controlled trials were systematically searched from Pub Med,Science Citation Index(SCI),Chinese journal full-text database(CJFD) up to December 2014.While the experimental groups(MSCs groups) were injected MSCs intravenously,the control groups were injected Delubecco's minimum essential medium(DMEM) or phosphate buffered saline(PBS).Subgroup analysis for each outcome measure was performed for the observing time point after the transplantation of MSCs.Weighted mean differences(WMD) and 95% confidence intervals(CI) were calculated for outcome parameters including ejection fraction(EF) and fractional shortening(FS),which were measured by echocardiogram after intravenous injection and analyzed by Rev Man 5.2 and STATA 12.0.Results Data from 9 studies(190 rats) were included in the meta-analysis.As compared to the control groups,the cardiac function of the experimental groups were not improved at day 7(EF:WMD=0.08,95%CI-1.32 to 1.16,P>0.01; FS:WMD=-0.12,95%CI-0.90 to 0.65,P>0.01) until at day 14 after MSCs' transplantation(EF:WMD=10.79,95%CI 9.16 to 12.42,P<0.01; FS:WMD=11.34,95%CI 10.44 to 12.23,P<0.01),and it lasted 4 weeks or more after transplantation of MSCs(EF:WMD=13.94,95%CI 12.24 to 15.64,P<0.01; FS:WMD=9.64,95%CI 7.98 to 11.31,P<0.01).Conclusion The therapeutic efficacies of MSCs in rats with myocardid infarction become increasing apparent as time advances since 2 weeks after injection.展开更多
Objective Bone-marrow stem-cell transplantation has been shown to improve cardiac function in patients with AMI, but the safety of intracoronory infusion of autologous peripheral blood stem-cell(PBSCs) in patients wit...Objective Bone-marrow stem-cell transplantation has been shown to improve cardiac function in patients with AMI, but the safety of intracoronory infusion of autologous peripheral blood stem-cell(PBSCs) in patients with AMI is unknown. For this reason, we observe the feasibility and safety of PBSCs transplantation by intracoronory infusion in such patients.Method Fourty one patients with AMI were allocated to receive Granulocyte Colony-Stimulating Factor (G-CSF:Filgrastim,300 μg) with the dose of 300 μg-600 μg/day to mobilize the stem cell, and the duration of applying G-CSF was 5 days . On the sixth day, PBSCs were separated by Baxter CS 3000 blood cell separator into suspend liquid 57 ml. Then the suspend liquid was infused into the infarct related artery (IRA)by occluding the over the wire balloon and infusing artery through balloon center lumen. In the process of the intracoronary infusion of PBSCs, the complications should be observed, which were arrhythmias including of bradycardia, sinus arrest or atrial ventricular block, premature ventricular beats ,ventricular tachycardia, ventricular fibrillation; and hypotention, etc. Results There were total 10 cases with complications during the intracoronary infusion of PBSCs. The incidence of complications was 24.4%(10/41), including bradycardia is 2.4 %(1/41), sinus arrest or atrial ventricular block is 4.9%(2/41), ventricular fibrillation is 2.4 %( 1/41), hypotention is14.6 % (6 /41).Conclusions In patients with AMI, intracoronary infusion of PBSCs is feasible and safe.展开更多
Embryonic stem cells and adult stem cells derives from bone marrow, muscule, liver, skin, nerve, adiposes and other tissues or organs are pluripotent. Embryonic stem cells in vitro can differentiate into derivatives o...Embryonic stem cells and adult stem cells derives from bone marrow, muscule, liver, skin, nerve, adiposes and other tissues or organs are pluripotent. Embryonic stem cells in vitro can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment, and have the ability to form any fully differentiated cells of the body. A series of remarkable studies suggested that adult stem cells undergo novel patterns of development named as transdifferentiation. All of them can be induced into cardiomyocytes in a certain condition and used to treat myocardial infarction. In this review, progress in the treatment of myocardial infarction with stem cells transplantation is summarized.展开更多
Objective To compare the efficiency and safety of intracoronary transplantation of peripheral blood stem cells (PBSC) between elderly and younger patients with heart failure after myocardial infarction (MI). Methods T...Objective To compare the efficiency and safety of intracoronary transplantation of peripheral blood stem cells (PBSC) between elderly and younger patients with heart failure after myocardial infarction (MI). Methods Twenty-five patients with heart failure after MI were divided into aged group(≥60 years,n=13) and non-aged group(<60years,n=12)to receive intracoronary PBSC transplantation (PBSCT) following bone marrow cells mobilized by granulocyte colony-stimulating factor(G-CSF). Clinical data including coronary lesion characteristic, left ventricular shape,infarct region area and cardiac function, as well as adverse side effects between the two groups were compared. Left ventricular function was evaluated before and 6 months after the treatment by single photon emission computed tomography(SPECT). Results At 6 months, the left ventricular ejection fraction (LVEF) and 6 minute walk test (6MWT) distance increased, while the left ventricular diastolic diameter (LVDd) decreased significantly in both groups. There were no significant difference between the two groups in absolute change in the cardiac function parameters. Conclusions The present study demonstrated that autologous intracoronary PBSCT might be safe and feasible for both old and younger patients with heart failure after MI and left ventricular function is significantly improved.(J Geriatr Cardiol 2007;4:233-237.)展开更多
In spite of modern treatment, acute myocardial infarction(AMI) still carries significant morbidity and mortality worldwide. Even though standard of care therapy improves symptoms and also long-term prognosis of patien...In spite of modern treatment, acute myocardial infarction(AMI) still carries significant morbidity and mortality worldwide. Even though standard of care therapy improves symptoms and also long-term prognosis of patients with AMI, it does not solve the critical issue, specifically the permanent damage of cardiomyocytes. As a result, a complex process occurs, namely cardiac remodeling, which leads to alterations in cardiac size, shape and function. This is what has driven the quest for unconventional therapeutic strategies aiming to regenerate the injured cardiac and vascular tissue. One of the latest breakthroughs in this regard is stem cell(SC) therapy. Based on favorable data obtained in experimental studies, therapeutic effectiveness of this innovative therapy has been investigated in clinical settings. Of various cell types used in the clinic, autologous bone marrow derived SCs were the first used to treat an AMI patient, 15 years ago. Since then, we have witnessed an increasing body of data as regards this cutting-edge therapy. Although feasibility and safety of SC transplant have been clearly proved, it's efficacy is still under dispute. Conducted studies and meta-analysis reported conflicting results, but there is hope for conclusive answer to be provided by the largest ongoing trial designed to demonstrate whether this treatment saves lives. In the meantime, strategies to enhance the SCs regenerative potential have been applied and/or suggested, position papers and recommendations have been published. But what have we learned so far and how can we properly use the knowledge gained? This review will analytically discuss each of the above topics, summarizing the current state of knowledge in the field.展开更多
OBJECTIVE To investigate the characteristics and regulations of medication in different stages of disease by constructing a dynamic disease network and a cellular feature network spanning from myocardial infarction to...OBJECTIVE To investigate the characteristics and regulations of medication in different stages of disease by constructing a dynamic disease network and a cellular feature network spanning from myocardial infarction to heart failure.METHODS Based on transcrip⁃tome and single-cell sequencing data from a mouse model of left anterior descending coro⁃nary artery ligation,a dynamic early-middle-late network and cellular feature network were con⁃structed by integrating differential gene expres⁃sion trends and biological functions.The robust⁃ness of the perturbation effect of traditional Chi⁃nese medicine(TCM)on the disease network was calculated based on multi-target TCM,and we acquired the foundational data by analyzing the results of effectiveness.The predictive plat⁃form was scrutinized and assessed with regards to the functional attributes of FDA approveddrugs and compound prescriptions,in order to determine the primary stages of intervention and the drug patterns actions in the progression of heart failure.RESULTS In this study,we devel⁃oped a prediction and analysis platform for assessing the efficacy of drugs using a networkbased approach.The accuracy of the system was validated by FDA approved-drugs.It was found that blood-activating drugs,heat-clearing drugs,and phlegm-expelling drugs exhibited favorable intervention effects during the early to middle stages of the disease by investigating the effects of single herbs and TCM prescriptions on disease progression.Similarly,phlegm-expelling drugs,spirit-nourishing drugs,and diuretic showed better intervention effects during the mid⁃dle to late stages.These findings were consis⁃tent with the clinical use of drugs.Analysis of the clustering heatmap results of TCM prescriptions revealed that the formulas aimed at qi stagnation and blood stasis had a strong effect in early stage,while the formulas for qi and yin deficiency and cardiorenal yang deficiency had a strong effect in the middle to late stages.Furthermore,analysis of the single-cell feature network demon⁃strated that TCM had advantages in modulating the changes in fibroblasts,myofibroblasts,endo⁃thelial cells,and granulocytes during the patho⁃logical process.Additionally,most prescriptions exhibited strong perturbation effects on the fea⁃ture network of NK-T cells,granulocytes,macro⁃phages,and myofibroblasts.CONCLUSION This platform quantitatively evaluates the primary action stages and characteristics of TCM and for⁃mulas involved in the dynamic process of myo⁃cardial infarction to heart failure based on the effective prediction of the efficacy of TCM and FDA approved-drugs.It provides reference for the precise clinical application of TCM and formu⁃las with multiple targets and multiple pathways.展开更多
Objectives To trace and evaluate intracoronary transplanted mesenchymal stem cells(MSCs) labeled with superparamagnetic iron oxide(SPIO) by using magnetic resonance imaging(MRI) in a swine model of myocardial infarcti...Objectives To trace and evaluate intracoronary transplanted mesenchymal stem cells(MSCs) labeled with superparamagnetic iron oxide(SPIO) by using magnetic resonance imaging(MRI) in a swine model of myocardial infarction (MI).Methods MSCs were transfected with a lentiviral vector carrying the gene encoding green fluorescent protein (GFP) and labeled in vitro with SPIO.Two weeks after MI, swine were randomized to intracoronary transplantation of dual -labeled MSCs(n = 10),MSCs-GFP(n = 10) and saline(n = 5).MRI examination was performed with a 1.5T clinical scanner at 24 hours,3 weeks and 8 weeks after cells transplantation. Signal intensity(SI) changes,cardiac function and MI size were measured using MRI.Correlation between MR findings and histomorphologic findings was also investigated. Results The labeling efficiency at a combination of 25μg Fe/ml SPIO and 0.8 pi/ml Lipofectamine 2000 reached 100%.SPIO labeling did not affect GFP fluorescence and dual-labeling did not affect cell proliferation(P】0.05). Multipotentiality was not affected especially for cardiomyocyte-like cells differentiation.Cardiac cell marker of a-MHC and actinin were positively expressed by immunofluorescence staining after induction.SI on T2 * WI decreased substantial- ly in the interventricular septum 24 hours after injection of MSCs.The intensity of hypo-intense signals appeared to increase throughout the later time points.Changes in SI at 24 hours,3 weeks and 8 weeks were 52.98%±10.74%,21.53%±5.40%and 6.23%±2.01%,respectively(P【0.01).DE-MRI demonstrated both dual-labeled MSCSs and MSCs-GFP could dramatically reduce the size of MI and improve cardiac function. Histological data revealed that prussian blue stain-positive cells were found mainly in the border zone which also showed green fluorescence but negative for macrophage marker(CD68).Gross pathologic examination revealed that engrafted MSCs dramatically reduce the extent of necrotic myocardium and promote the regeneration of new,contractile myocardium along the subendocardial surface of the MI. Conclusions MSCs could be efficiently and safely labeled with SPIO and GFP,and could be detected reproducibly and noninvasively in vivo using cardiac MRI.Intracoronary transplantation of dual-labeled MSCs could increase cardiac function and reduce the size of MI.展开更多
BACKGROUND Cardiovascular diseases are the major cause of mortality worldwide.Regeneration of the damaged myocardium remains a challenge due to mechanical constraints and limited healing ability of the adult heart tis...BACKGROUND Cardiovascular diseases are the major cause of mortality worldwide.Regeneration of the damaged myocardium remains a challenge due to mechanical constraints and limited healing ability of the adult heart tissue.Cardiac tissue engineering using biomaterial scaffolds combined with stem cells and bioactive molecules could be a highly promising approach for cardiac repair.Use of biomaterials can provide suitable microenvironment to the cells and can solve cell engraftment problems associated with cell transplantation alone.Mesenchymal stem cells(MSCs)are potential candidates in cardiac tissue engineering because of their multilineage differentiation potential and ease of isolation.Use of DNA methyl transferase inhibitor,such as zebularine,in combination with three-dimensional(3D)scaffold can promote efficient MSC differentiation into cardiac lineage,as epigenetic modifications play a fundamental role in determining cell fate and lineage specific gene expression.AIM To investigate the role of collagen scaffold and zebularine in the differentiation of rat bone marrow(BM)-MSCs and their subsequent in vivo effects.METHODS MSCs were isolated from rat BM and characterized morphologically,immunophenotypically and by multilineage differentiation potential.MSCs were seeded in collagen scaffold and treated with 3μmol/L zebularine in three different ways.Cytotoxicity analysis was done and cardiac differentiation was analyzed at the gene and protein levels.Treated and untreated MSC-seeded scaffolds were transplanted in the rat myocardial infarction(MI)model and cardiac function was assessed by echocardiography.Cell tracking was performed by DiI dye labeling,while regeneration and neovascularization were evaluated by histological and immunohistochemical analysis,respectively.RESULTS MSCs were successfully isolated and seeded in collagen scaffold.Cytotoxicity analysis revealed that zebularine was not cytotoxic in any of the treatment groups.Cardiac differentiation analysis showed more pronounced results in the type 3 treatment group which was subsequently chosen for the transplantation in the in vivo MI model.Significant improvement in cardiac function was observed in the zebularine treated MSC-seeded scaffold group as compared to the MI control.Histological analysis also showed reduction in fibrotic scar,improvement in left ventricular wall thickness and preservation of ventricular remodeling in the zebularine treated MSC-seeded scaffold group.Immunohistochemical analysis revealed significant expression of cardiac proteins in DiI labeled transplanted cells and a significant increase in the number of blood vessels in the zebularine treated MSC-seeded collagen scaffold transplanted group.CONCLUSION Combination of 3D collagen scaffold and zebularine treatment enhances cardiac differentiation potential of MSCs,improves cell engraftment at the infarcted region,reduces infarct size and improves cardiac function.展开更多
Objective:To investigate the effect of MCP-1 on mesenchymal stem cells(MSCs) homing to injured myocardium in a rat myocardial infarction(MI) model. Methods:Rat myocardial infarction model was established by perm...Objective:To investigate the effect of MCP-1 on mesenchymal stem cells(MSCs) homing to injured myocardium in a rat myocardial infarction(MI) model. Methods:Rat myocardial infarction model was established by permanent left anterior descending branch ligation. Mesenchymal stem cells from donor rats were cultured in IMDM and labeled with BrdU. The Rats were divided into two groups. Monocyte chemotactic protein I(MCP-1) expression were measured by in situ hybridization and immunohistochemistry in the sham operated or infarcted hearts at 1, 2, 4, 7, 14 and 28 days post operation in MCP-1 detection group. The rats were injected with MCP-1, anti-MCP-1 antibody or saline 4 days after myocardial infarction in intervention group. Then, a total of 5 × 10^6 cells in 2.5 ml of PBS were injected through the tail vein. The number of the labeled MSCs in the infarcted hearts was counted 3 days post injection. Cardiac function and blood vessel density were assessed 28 days post injection. Results:Self-generating MCP-1 expression was increased at the first day, peaked at the 7^th day and decreased thereafter post MI and remained unchanged in sham operated hearts. The MSCs enrichment in the host hearts were more abundant in the MI groups than that in the non-MI group(P= 0.000), the MSCs enrichment in the host hearts were more abundant in the MCP-1 injected group than that in the anti-MCP-1 antibody and saline injected groups (P = 0.000). Cardiac function was improved more in MCP-1 injected group than anti-MCP-1 antibody and saline injected groups(P= 0.000). Neovascularization in MCP-1 injected group significantly increased compared with that of other groups(P = 0.000). Conclusion: Myocardial MCP-1 expression was increased only in the early phase post MI. MCP-1 may enhance MSCs homing to the injured heart and improve cardiac function by promoting neovascularization.展开更多
Objective:To investigate the intervention effect of Buyang Huanwu Decoction on endothelial progenitor cell function(EPCs),and to explore the therapeutic mechanism of Buyang Huanwu Decoction.Methods:This research take ...Objective:To investigate the intervention effect of Buyang Huanwu Decoction on endothelial progenitor cell function(EPCs),and to explore the therapeutic mechanism of Buyang Huanwu Decoction.Methods:This research take 54 rats were divided into blank group,the control group,model group,Chinese medicine,western medicine group and combine traditional Chinese and western medicine group,tonifying Yang also five decoction and atorvastatin calcium for acute myocardial infarction(AMI)rats group intervention,by using the method of density gradient centrifugation separation training each rat endothelial progenitor cells,using tetramethyl azo salt trace enzyme reaction colorimetry,used in the determination of adhesion ability and improved Boyden chamber,the method of analysis and comparison between groups of endothelial progenitor cells proliferation,adhesion and migration.Results:In 7 days,14 days and 4 weeks,acute myocardial infarction model of rat peripheral blood EPCs count,proliferation,migration and adhesion ability were compared with control group were significantly decline,tonifying Yang also five decoction group,western medicine control group and combine traditional Chinese and western medicine group of peripheral blood EPCs count,proliferation,migration and adhesion ability compared with model group were significantly increased(P<0.05),and combine traditional Chinese and western medicine group is the traditional Chinese medicine and western medicine group on the improvement of the function of EPCs effect more significantly(P<0.05).Conclusion:Statins combined with Buyang Huanwu Decoction can better improve the endothelial function of AMI rats than traditional Chinese medicine or western medicine.Further clinical studies on statins may better improve the endothelial function of AMI patients,and provide a new research entry point for improving the long-term prognosis of AMI patients.展开更多
Adipose-derived stem cells(ASCs) induce therapeutic angiogenesis due to pro-angiogenic cytokines secretion. Superparamagnetic iron oxide(SPIO) nanoparticles are critical for magnetic resonance(MR) tracking of im...Adipose-derived stem cells(ASCs) induce therapeutic angiogenesis due to pro-angiogenic cytokines secretion. Superparamagnetic iron oxide(SPIO) nanoparticles are critical for magnetic resonance(MR) tracking of implanted cells. Hypoxia is a powerful stimulus for angiogenic activity of ASCs. In this study, we investigated whether therapeutic potency could be enhanced by implantation of hypoxia-preconditioned SPIO-labeled ASCs(SPIOASCs) into the infarcted myocardium. ASCs and SPIOASCs were cultured under 2% O_2(hypoxia) or 95% air(normoxia). Cells were intramyocardially injected into the infarcted myocardium after 48-h culture. We found that hypoxia culture increased the m RNA expression of hypoxia-inducible factor-1 alpha(HIF-1α) and vascular endothelial growth factor(VEGF) in ASCs and SPIOASCs. The VEGF protein in the conditioned medium was significantly higher in hypoxic ASCs and SPIOASCs than in normoxic ASCs and SPIOASCs. The capillary density and left ventricular contractile function in the infarcted myocardium were significantly higher 4 weeks after implantation with hypoxic ASCs and SPIOASCs than with normoxic ASCs and SPIOASCs. Improvement in the capillary density and left ventricle function didn't differ between hypoxic ASCs-transplanted rats and hypoxic SPIOASCs-transplanted rats. Hypoxic culture enhanced the angiogenic efficiency of ASCs. It was concluded that implantation of hypoxic ASCs or SPIOASCs promotes therapeutic angiogenesis and cardiac function recovery in the infarcted myocardium. SPIO labeling does not impact the beneficial effect of hypoxic ASCs.展开更多
Post-myocardial infarction(MI),the left ventricle(LV)undergoes a series of events collectively referred to as remodeling.As a result,damaged myocardium is replaced with fibrotic tissue consequently leading to contract...Post-myocardial infarction(MI),the left ventricle(LV)undergoes a series of events collectively referred to as remodeling.As a result,damaged myocardium is replaced with fibrotic tissue consequently leading to contractile dysfunction and ultimately heart failure.LV remodeling post-MI includes inflammatory,fibrotic,and neovascularization responses that involve regulated cell recruitment and function.Stem cells(SCs)have been transplanted post-MI for treatment of LV remodeling and shown to improve LV function by reduction in scar tissue formation in humans and animal models of MI.The promising results obtained from the application of SCs post-MI have sparked a massive effort to identify the optimal SC for regeneration of cardiomyocytes and the paradigm for clinical applications.Although SC transplantations are generally associated with new tissue formation,SCs also secrete cytokines,chemokines and growth factors that robustly regulate cell behavior in a paracrine fashion during the remodeling process.In this review,the different types of SCs used for cardiomyogenesis,markers of differentiation,paracrine factor secretion,and strategies for cell recruitment and delivery are addressed.展开更多
In the present study, olfactory ensheathing cells were transplanted into the cortices of infarcted (infarct transplantation group), normal (normal transplantation group), and bilateral hemispheres (bilateral tran...In the present study, olfactory ensheathing cells were transplanted into the cortices of infarcted (infarct transplantation group), normal (normal transplantation group), and bilateral hemispheres (bilateral transplantation group). Olfactory ensheathing cells migrated to the infarct focus. The number of growth associated protein 43-positive cells and nerve fibers was slightly increased in the infarct area. These changes were more evident in the bilateral cortical transplantation group. Results demonstrated that transplanted olfactory ensheathing cells can migrate in rats with cerebra infarction. The olfactory ensheathing cells on the normal side can also promote neurological function. Bilateral cortical transplantation exhibited superior effects over unilateral transplantation.展开更多
文摘The best time of stem cells transplantation for treating acute myocardial infarction (AMI) is still to be followed with interest and a focus issue for clinical cardiologist. A brief meta-analysis of clinical trials about timing-window and therapeutic effects of stem cell transplantation for treating AMI will be made out in this article.
文摘Objectives Bone-marrow stem-cell transplantation has been shown to improve cardiac function in patients with acute myocardial infarction (AMI) , but the safety of intracoronory infusion of autologous peripheral blood stem-cell (PBSCs) in patients with AMI is unknown. For this reason, we observe the feasibility and safety of PBSCs transplantation by intracoronory infusion in such patients. Methods 41 patients with AMI were allocated to receive granulocyte colony-stimulating factor (G- CSF: Filgrastim,300μg) with the dose of 300μg~ 600μg/day to mobilize the stem cell, and the duration of applying G-CSF was 5 days. On the sixth day, PBSCs were separated by Baxter CS 3000 blood cel 1 separator into suspend liquid 57 ml. Then the suspend liquid was infused into the infarct related artery (IRA) by occluding the over the wire balloon and infusing artery through balloon center lumen. In the process of the intracoronary infusion of PBSCs, the complications should be observed, which were arrhythmias including of bradycardia, sinus arrest or atrial ventricular block, premature ve. ntricular beats ,ven~icular tachycardia, ventricular fibrillation; and hypotention, etc. Results There were total 10 cases with complications during the intracoronary infusion of PBSCs. The incidence of complications was 24.4% (10/41), including bradyca- rdia was 2.4 % (1/41), sinus arrest or atrial ventri- cular block was 4.0% (2/41), ventricular fibrillation was 2.4 % (1/41), hypotention was 14.6 % (6/41). Conclusions In patients with AMI, intracoronary infusion of PBSCs is feasible and safe.
基金Project (No. 2004QN018) supported by the Health Bureau of Zhejiang Province, China
文摘Background:Bone marrow mesenchymal stem cell (MSC) transplantation is a promising strategy in the treatment of myocardial infarction (MI). However, the time for transplanting cells remains controversial. The aim of this study was to find an optimal time point for cell transplantation. Methods: MSCs were isolated and cultured from Sprague-Dawley (SD) rats. MI model was set up in SD rats by permanent ligation of left anterior descending coronary artery. MSCs were directly injected into the infarct border zone at 1 h, 1 week and 2 weeks after MI, respectively. Sham-operated and MI control groups received equal volume of phosphate buffered saline (PBS). At 4 weeks after MI, cardiac function was assessed by echocardiography; vessel density was analyzed on hematoxylin-eosin stained slides by light microscopy; the apoptosis of cardiomyocytes was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay; the expressions of proteins were analyzed by Western blot. Results: MSC transplantation improved cardiac function, reduced the apoptosis of cardiomyocytes and increased vessel density. These benefits were more obvious in 1-week group than in 1-h and 2-week groups. There are more obvious in-creases in the ratio of bcl-2/bax and the expression of vascular endothelial growth factor (VEGF) and more obvious decreases in the expression of cleaved-caspase-3 in 1-week group than those in other two groups. Conclusion: MSC transplantation was beneficial for the recovery of cardiac function. MSC transplantation at 1 week post-MI exerted the best effects on increases of cardiac function, anti-apoptosis and angiogenesis.
文摘Objective: This study was performed to evaluate whether implantation of mesenchymal stem cell (MSC) would reduce left ventricular remodelling from the molecular mechanisms compared with angiotensin-converting enzyme inhibitors (ACEIs) perindopril into ischemic myocardium after acute myocardial infarction. Methods: Forty rats were divided into four groups: control, MSC, ACEI, MSC+ACEI groups. Bone marrow stem cell derived rat was injected immediately into a zone made ischemic by coronary artery ligation in MSC group and MSC+ACEI group. Phosphate-buffered saline (PBS) was injected into control group. Perindopril was administered p.o. to ACEI group and MSC+ACEI group. Six weeks after implantation, the rats were killed and heart sample was collected. Fibrillar collagen was observed by meliorative Masson’s trichome stain. Western Blotting was employed to evaluate the protein expression of matrix metalloproteinase (MMP)-2, matrix metalloproteinase (MMP)-9 in infarction zone. The transcriptional level of MMP2, MMP9 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in infarction area was detected by reverse transcriptase PCR (RT-PCR) analysis. Results: The fibrillar collagen area, the protein expression of MMP2, MMP9 and the transcriptional level of MMP2, MMP9 mRNA in infarction zone reduced in MSC group, ACEI group, and MSC+ACEI group. No significant difference was detected in the expression of TIMP1 mRNA among the 4 groups. Conclusion: Both MSC and ACEI could reduce infarction remodelling by altering collagen metabolism.
基金National Natural Science Foundation of China(No.81960861,81460712)Guangxi key science research and development plan project(No.Guike AB19110006)。
文摘Objective:To investigate the effects ofQishengyiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice after myocardial infarction through in vitro cell molecular biology experiments.Methods:The animals used in this experiment were male mice with eGFP+/-.Sixty mice were randomly divided into three groups(n=20):myocardial infarction group(MI+PBS),myocardial infarction+mesenchyme plasma stem cell transplantation group(MI+MSCs)and myocardial infarction+Qishenyiqi drip pill combined with mesenchymal stem cell transplantation group(MI+MSCs+QSYQ).Qishenyiqi dripping pills were prepared into a medicinal solution with a concentration of 3.9 mg/mL with distilled water.The MI+MSCs+QSYQ group was orally administered with 0.1 mL/kg/day,and the other two groups were orally administered with an equal amount of normal saline.Mice in each group were adaptively fed continuously for 2 weeks,and the myocardial infarction model was established by ligation of the anterior descending coronary artery by thoracic ligation.Twenty-four hours after the model was established,bone marrow mesenchymal stem cells were isolated from the tibia of the mice and injected intracardiacly Bone marrow-derived mesenchymal stem cells were transplanted,and multiple injections were made around the myocardial infarction area of mice.The control group was injected with the same amount of PBS.0h,3 days,7 days,and 14 days after cell transplantation,observe the stem cell morphology under a microscope;on day 7 of cell transplantation,track the expression of eGFP-positive cells with a fluorescence microscope;before modeling,14 and 21 days after cell transplantation,use Cardiac function was measured by echocardiography.After 21 days of modeling,the mice were sacrificed,and heart samples were taken.The angiogenesis of the mice was observed by immunohistochemical staining and microvascular density determination.Results:The morphological growth of transplanted stem cells was proportional to the time of cell transplantation.Compared with MI+PBS group,CD90.2 and y6A were highly expressed on the surface of bone marrow mesenchymal stem cells in MI+MSCs group and MI+MSCs+QSYQ group,while CD31 and CD117 were almost not expressed.On the 21st day after stem cell transplantation,the values of LVDd and LVSD in MI+MSCs+QSYQ group were significantly lower than those in MI+PBS group and MI+MSCs group.At the same time,LVEF and LVFS increased significantly.The results of quantitative immunohistochemical analysis showed that the angiogenesis density in the MI+MSCs+QSYQ group increased significantly,and the difference between the groups was statistically significant(P<0.05).Conclusion:Qishen Yiqi dripping pills combined with bone marrow mesenchymal stem cell transplantation can not only promote angiogenesis in mice with myocardial infarction,but also play a positive role in improving cardiac function.
文摘To probe into the influence of transplantation of allogenic bone marrow mononuclear cells (BM-MNCs) on the left ventricular remodeling of rat after acute myocardial infarction (AMI), 60 male Wistar rats were evenly divided into three groups at random: control group 1, control group 2 and transplantation group. In control group 1, chest was opened without ligation of coronary artery; in control group 2 and transplantation group, the left anterior descending branch of coronary artery was ligated to establish AMI model. Prepared culture medium and allogenic BM-MNCs suspension were respectively implanted the surrounding area of infracted cardiac muscle via epicardium of control group 2 and transplantation group. Four weeks after the operation, the osteopontin gene (OPN mRNA, P〈0.01), type Ⅰ collagen (P〈0.01) and angiotensin Ⅱ (AngⅡ, P〈0.01) content in the left ventricular non-infracted myocardium, and the Ang Ⅱ density in blood plasma (P〈0.05) of transplantation group and control group 2 were all significantly higher than that of control group Ⅰ. In the transplantation group, the myocardial OPN InRNA, type Ⅰ collagen and Ang Ⅱ content of non-infracted zone in left ventricle, and the Ang Ⅱ concentration in blood plasma were all significantly lower than those of control group 2 (P〈0.05 for all). It is concluded that allogenic BM-MNCs transplantation may ease left ventricular remodeling after AMI by inhibiting the synthesis of type Ⅰ collagen in the cardiac muscle and down-regulating the expression of Ang Ⅱ and OPN gene.
基金supported by grants from the Scientific Research Plan Project of Liaoning Province(20092250096)Scientific Research Plan Project of Dalian(2010E15SF178)
文摘BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells can be used in the treatment of acute myocardial infarction(Ml).This study aimed to investigate the effect of intravenous and epicardial transplantion of BMSCs on myocardial infarction size in a rabbit model.METHODS:A total of 60 New Zealand rabbits were randomly divided into three groups:control group,epicardium group(group Ⅰ) and ear vein group(group Ⅱ).The BMSCs were collected from the tibial plateau in group Ⅰ and group Ⅱ,cultured and labeled.In the three groups,rabbits underwent thoracotomy and ligation of the middle left anterior descending artery.The elevation of ST segment>0.2 mV lasting for 30 minutes on the lead Ⅱ and Ⅲ of electrocardiogram suggested successful introduction of myocardial infarction.Two weeks after myocardial infarction,rabbits in group Ⅰ were treated with autogenous BMSCs at the infarct region and those in group Ⅱ received intravenous transplantation of BMSCs.In the control group,rabbits were treated with PBS following thoracotomy.Four weeks after myocardial infarction,the heart was collected from all rabbits and the infarct size was calculated.The heart was cut into sections followed by HE staining and calculation of infarct size with an image system.RESULTS:In groups Ⅰ and Ⅱ,the infarct size was significantly reduced after transplantation with BMSCs when compared with the control group(P<0.05).However,there was no significant difference in the infarct size between groups Ⅰ and Ⅱ(P>0.05).CONCLUSION:Transplantation of BMSCs has therapeutic effect on Ml.Moreover,epicardial and intravenous transplantation of BMSCs has comparable therapeutic efficacy on myocardial infarction.
基金Supported by the Youth Project of National Natural Science Foundation(81100078)the Key Project of Chinese Ministry of Education(211207)+1 种基金Guangzhou Pearl River science and technology new star project plan(2012J2200063)Project of Guangdong Science and Technology Department(S2011040001392)
文摘Objective To investigate the short- and long-term therapeutic efficacies of intravenous transplantation of bone marrow stem cells(MSCs) in rats with experimental myocardial infarction by metaanalysis.Methods Randomized controlled trials were systematically searched from Pub Med,Science Citation Index(SCI),Chinese journal full-text database(CJFD) up to December 2014.While the experimental groups(MSCs groups) were injected MSCs intravenously,the control groups were injected Delubecco's minimum essential medium(DMEM) or phosphate buffered saline(PBS).Subgroup analysis for each outcome measure was performed for the observing time point after the transplantation of MSCs.Weighted mean differences(WMD) and 95% confidence intervals(CI) were calculated for outcome parameters including ejection fraction(EF) and fractional shortening(FS),which were measured by echocardiogram after intravenous injection and analyzed by Rev Man 5.2 and STATA 12.0.Results Data from 9 studies(190 rats) were included in the meta-analysis.As compared to the control groups,the cardiac function of the experimental groups were not improved at day 7(EF:WMD=0.08,95%CI-1.32 to 1.16,P>0.01; FS:WMD=-0.12,95%CI-0.90 to 0.65,P>0.01) until at day 14 after MSCs' transplantation(EF:WMD=10.79,95%CI 9.16 to 12.42,P<0.01; FS:WMD=11.34,95%CI 10.44 to 12.23,P<0.01),and it lasted 4 weeks or more after transplantation of MSCs(EF:WMD=13.94,95%CI 12.24 to 15.64,P<0.01; FS:WMD=9.64,95%CI 7.98 to 11.31,P<0.01).Conclusion The therapeutic efficacies of MSCs in rats with myocardid infarction become increasing apparent as time advances since 2 weeks after injection.
文摘Objective Bone-marrow stem-cell transplantation has been shown to improve cardiac function in patients with AMI, but the safety of intracoronory infusion of autologous peripheral blood stem-cell(PBSCs) in patients with AMI is unknown. For this reason, we observe the feasibility and safety of PBSCs transplantation by intracoronory infusion in such patients.Method Fourty one patients with AMI were allocated to receive Granulocyte Colony-Stimulating Factor (G-CSF:Filgrastim,300 μg) with the dose of 300 μg-600 μg/day to mobilize the stem cell, and the duration of applying G-CSF was 5 days . On the sixth day, PBSCs were separated by Baxter CS 3000 blood cell separator into suspend liquid 57 ml. Then the suspend liquid was infused into the infarct related artery (IRA)by occluding the over the wire balloon and infusing artery through balloon center lumen. In the process of the intracoronary infusion of PBSCs, the complications should be observed, which were arrhythmias including of bradycardia, sinus arrest or atrial ventricular block, premature ventricular beats ,ventricular tachycardia, ventricular fibrillation; and hypotention, etc. Results There were total 10 cases with complications during the intracoronary infusion of PBSCs. The incidence of complications was 24.4%(10/41), including bradycardia is 2.4 %(1/41), sinus arrest or atrial ventricular block is 4.9%(2/41), ventricular fibrillation is 2.4 %( 1/41), hypotention is14.6 % (6 /41).Conclusions In patients with AMI, intracoronary infusion of PBSCs is feasible and safe.
文摘Embryonic stem cells and adult stem cells derives from bone marrow, muscule, liver, skin, nerve, adiposes and other tissues or organs are pluripotent. Embryonic stem cells in vitro can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment, and have the ability to form any fully differentiated cells of the body. A series of remarkable studies suggested that adult stem cells undergo novel patterns of development named as transdifferentiation. All of them can be induced into cardiomyocytes in a certain condition and used to treat myocardial infarction. In this review, progress in the treatment of myocardial infarction with stem cells transplantation is summarized.
文摘Objective To compare the efficiency and safety of intracoronary transplantation of peripheral blood stem cells (PBSC) between elderly and younger patients with heart failure after myocardial infarction (MI). Methods Twenty-five patients with heart failure after MI were divided into aged group(≥60 years,n=13) and non-aged group(<60years,n=12)to receive intracoronary PBSC transplantation (PBSCT) following bone marrow cells mobilized by granulocyte colony-stimulating factor(G-CSF). Clinical data including coronary lesion characteristic, left ventricular shape,infarct region area and cardiac function, as well as adverse side effects between the two groups were compared. Left ventricular function was evaluated before and 6 months after the treatment by single photon emission computed tomography(SPECT). Results At 6 months, the left ventricular ejection fraction (LVEF) and 6 minute walk test (6MWT) distance increased, while the left ventricular diastolic diameter (LVDd) decreased significantly in both groups. There were no significant difference between the two groups in absolute change in the cardiac function parameters. Conclusions The present study demonstrated that autologous intracoronary PBSCT might be safe and feasible for both old and younger patients with heart failure after MI and left ventricular function is significantly improved.(J Geriatr Cardiol 2007;4:233-237.)
文摘In spite of modern treatment, acute myocardial infarction(AMI) still carries significant morbidity and mortality worldwide. Even though standard of care therapy improves symptoms and also long-term prognosis of patients with AMI, it does not solve the critical issue, specifically the permanent damage of cardiomyocytes. As a result, a complex process occurs, namely cardiac remodeling, which leads to alterations in cardiac size, shape and function. This is what has driven the quest for unconventional therapeutic strategies aiming to regenerate the injured cardiac and vascular tissue. One of the latest breakthroughs in this regard is stem cell(SC) therapy. Based on favorable data obtained in experimental studies, therapeutic effectiveness of this innovative therapy has been investigated in clinical settings. Of various cell types used in the clinic, autologous bone marrow derived SCs were the first used to treat an AMI patient, 15 years ago. Since then, we have witnessed an increasing body of data as regards this cutting-edge therapy. Although feasibility and safety of SC transplant have been clearly proved, it's efficacy is still under dispute. Conducted studies and meta-analysis reported conflicting results, but there is hope for conclusive answer to be provided by the largest ongoing trial designed to demonstrate whether this treatment saves lives. In the meantime, strategies to enhance the SCs regenerative potential have been applied and/or suggested, position papers and recommendations have been published. But what have we learned so far and how can we properly use the knowledge gained? This review will analytically discuss each of the above topics, summarizing the current state of knowledge in the field.
基金National Science and Technology Major Project (2019YFC1708904)the Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ13-YQ-048)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZXKT21008)
文摘OBJECTIVE To investigate the characteristics and regulations of medication in different stages of disease by constructing a dynamic disease network and a cellular feature network spanning from myocardial infarction to heart failure.METHODS Based on transcrip⁃tome and single-cell sequencing data from a mouse model of left anterior descending coro⁃nary artery ligation,a dynamic early-middle-late network and cellular feature network were con⁃structed by integrating differential gene expres⁃sion trends and biological functions.The robust⁃ness of the perturbation effect of traditional Chi⁃nese medicine(TCM)on the disease network was calculated based on multi-target TCM,and we acquired the foundational data by analyzing the results of effectiveness.The predictive plat⁃form was scrutinized and assessed with regards to the functional attributes of FDA approveddrugs and compound prescriptions,in order to determine the primary stages of intervention and the drug patterns actions in the progression of heart failure.RESULTS In this study,we devel⁃oped a prediction and analysis platform for assessing the efficacy of drugs using a networkbased approach.The accuracy of the system was validated by FDA approved-drugs.It was found that blood-activating drugs,heat-clearing drugs,and phlegm-expelling drugs exhibited favorable intervention effects during the early to middle stages of the disease by investigating the effects of single herbs and TCM prescriptions on disease progression.Similarly,phlegm-expelling drugs,spirit-nourishing drugs,and diuretic showed better intervention effects during the mid⁃dle to late stages.These findings were consis⁃tent with the clinical use of drugs.Analysis of the clustering heatmap results of TCM prescriptions revealed that the formulas aimed at qi stagnation and blood stasis had a strong effect in early stage,while the formulas for qi and yin deficiency and cardiorenal yang deficiency had a strong effect in the middle to late stages.Furthermore,analysis of the single-cell feature network demon⁃strated that TCM had advantages in modulating the changes in fibroblasts,myofibroblasts,endo⁃thelial cells,and granulocytes during the patho⁃logical process.Additionally,most prescriptions exhibited strong perturbation effects on the fea⁃ture network of NK-T cells,granulocytes,macro⁃phages,and myofibroblasts.CONCLUSION This platform quantitatively evaluates the primary action stages and characteristics of TCM and for⁃mulas involved in the dynamic process of myo⁃cardial infarction to heart failure based on the effective prediction of the efficacy of TCM and FDA approved-drugs.It provides reference for the precise clinical application of TCM and formu⁃las with multiple targets and multiple pathways.
文摘Objectives To trace and evaluate intracoronary transplanted mesenchymal stem cells(MSCs) labeled with superparamagnetic iron oxide(SPIO) by using magnetic resonance imaging(MRI) in a swine model of myocardial infarction (MI).Methods MSCs were transfected with a lentiviral vector carrying the gene encoding green fluorescent protein (GFP) and labeled in vitro with SPIO.Two weeks after MI, swine were randomized to intracoronary transplantation of dual -labeled MSCs(n = 10),MSCs-GFP(n = 10) and saline(n = 5).MRI examination was performed with a 1.5T clinical scanner at 24 hours,3 weeks and 8 weeks after cells transplantation. Signal intensity(SI) changes,cardiac function and MI size were measured using MRI.Correlation between MR findings and histomorphologic findings was also investigated. Results The labeling efficiency at a combination of 25μg Fe/ml SPIO and 0.8 pi/ml Lipofectamine 2000 reached 100%.SPIO labeling did not affect GFP fluorescence and dual-labeling did not affect cell proliferation(P】0.05). Multipotentiality was not affected especially for cardiomyocyte-like cells differentiation.Cardiac cell marker of a-MHC and actinin were positively expressed by immunofluorescence staining after induction.SI on T2 * WI decreased substantial- ly in the interventricular septum 24 hours after injection of MSCs.The intensity of hypo-intense signals appeared to increase throughout the later time points.Changes in SI at 24 hours,3 weeks and 8 weeks were 52.98%±10.74%,21.53%±5.40%and 6.23%±2.01%,respectively(P【0.01).DE-MRI demonstrated both dual-labeled MSCSs and MSCs-GFP could dramatically reduce the size of MI and improve cardiac function. Histological data revealed that prussian blue stain-positive cells were found mainly in the border zone which also showed green fluorescence but negative for macrophage marker(CD68).Gross pathologic examination revealed that engrafted MSCs dramatically reduce the extent of necrotic myocardium and promote the regeneration of new,contractile myocardium along the subendocardial surface of the MI. Conclusions MSCs could be efficiently and safely labeled with SPIO and GFP,and could be detected reproducibly and noninvasively in vivo using cardiac MRI.Intracoronary transplantation of dual-labeled MSCs could increase cardiac function and reduce the size of MI.
文摘BACKGROUND Cardiovascular diseases are the major cause of mortality worldwide.Regeneration of the damaged myocardium remains a challenge due to mechanical constraints and limited healing ability of the adult heart tissue.Cardiac tissue engineering using biomaterial scaffolds combined with stem cells and bioactive molecules could be a highly promising approach for cardiac repair.Use of biomaterials can provide suitable microenvironment to the cells and can solve cell engraftment problems associated with cell transplantation alone.Mesenchymal stem cells(MSCs)are potential candidates in cardiac tissue engineering because of their multilineage differentiation potential and ease of isolation.Use of DNA methyl transferase inhibitor,such as zebularine,in combination with three-dimensional(3D)scaffold can promote efficient MSC differentiation into cardiac lineage,as epigenetic modifications play a fundamental role in determining cell fate and lineage specific gene expression.AIM To investigate the role of collagen scaffold and zebularine in the differentiation of rat bone marrow(BM)-MSCs and their subsequent in vivo effects.METHODS MSCs were isolated from rat BM and characterized morphologically,immunophenotypically and by multilineage differentiation potential.MSCs were seeded in collagen scaffold and treated with 3μmol/L zebularine in three different ways.Cytotoxicity analysis was done and cardiac differentiation was analyzed at the gene and protein levels.Treated and untreated MSC-seeded scaffolds were transplanted in the rat myocardial infarction(MI)model and cardiac function was assessed by echocardiography.Cell tracking was performed by DiI dye labeling,while regeneration and neovascularization were evaluated by histological and immunohistochemical analysis,respectively.RESULTS MSCs were successfully isolated and seeded in collagen scaffold.Cytotoxicity analysis revealed that zebularine was not cytotoxic in any of the treatment groups.Cardiac differentiation analysis showed more pronounced results in the type 3 treatment group which was subsequently chosen for the transplantation in the in vivo MI model.Significant improvement in cardiac function was observed in the zebularine treated MSC-seeded scaffold group as compared to the MI control.Histological analysis also showed reduction in fibrotic scar,improvement in left ventricular wall thickness and preservation of ventricular remodeling in the zebularine treated MSC-seeded scaffold group.Immunohistochemical analysis revealed significant expression of cardiac proteins in DiI labeled transplanted cells and a significant increase in the number of blood vessels in the zebularine treated MSC-seeded collagen scaffold transplanted group.CONCLUSION Combination of 3D collagen scaffold and zebularine treatment enhances cardiac differentiation potential of MSCs,improves cell engraftment at the infarcted region,reduces infarct size and improves cardiac function.
文摘Objective:To investigate the effect of MCP-1 on mesenchymal stem cells(MSCs) homing to injured myocardium in a rat myocardial infarction(MI) model. Methods:Rat myocardial infarction model was established by permanent left anterior descending branch ligation. Mesenchymal stem cells from donor rats were cultured in IMDM and labeled with BrdU. The Rats were divided into two groups. Monocyte chemotactic protein I(MCP-1) expression were measured by in situ hybridization and immunohistochemistry in the sham operated or infarcted hearts at 1, 2, 4, 7, 14 and 28 days post operation in MCP-1 detection group. The rats were injected with MCP-1, anti-MCP-1 antibody or saline 4 days after myocardial infarction in intervention group. Then, a total of 5 × 10^6 cells in 2.5 ml of PBS were injected through the tail vein. The number of the labeled MSCs in the infarcted hearts was counted 3 days post injection. Cardiac function and blood vessel density were assessed 28 days post injection. Results:Self-generating MCP-1 expression was increased at the first day, peaked at the 7^th day and decreased thereafter post MI and remained unchanged in sham operated hearts. The MSCs enrichment in the host hearts were more abundant in the MI groups than that in the non-MI group(P= 0.000), the MSCs enrichment in the host hearts were more abundant in the MCP-1 injected group than that in the anti-MCP-1 antibody and saline injected groups (P = 0.000). Cardiac function was improved more in MCP-1 injected group than anti-MCP-1 antibody and saline injected groups(P= 0.000). Neovascularization in MCP-1 injected group significantly increased compared with that of other groups(P = 0.000). Conclusion: Myocardial MCP-1 expression was increased only in the early phase post MI. MCP-1 may enhance MSCs homing to the injured heart and improve cardiac function by promoting neovascularization.
基金Regional fund project of the national natural science foundation of China(No.81660778)。
文摘Objective:To investigate the intervention effect of Buyang Huanwu Decoction on endothelial progenitor cell function(EPCs),and to explore the therapeutic mechanism of Buyang Huanwu Decoction.Methods:This research take 54 rats were divided into blank group,the control group,model group,Chinese medicine,western medicine group and combine traditional Chinese and western medicine group,tonifying Yang also five decoction and atorvastatin calcium for acute myocardial infarction(AMI)rats group intervention,by using the method of density gradient centrifugation separation training each rat endothelial progenitor cells,using tetramethyl azo salt trace enzyme reaction colorimetry,used in the determination of adhesion ability and improved Boyden chamber,the method of analysis and comparison between groups of endothelial progenitor cells proliferation,adhesion and migration.Results:In 7 days,14 days and 4 weeks,acute myocardial infarction model of rat peripheral blood EPCs count,proliferation,migration and adhesion ability were compared with control group were significantly decline,tonifying Yang also five decoction group,western medicine control group and combine traditional Chinese and western medicine group of peripheral blood EPCs count,proliferation,migration and adhesion ability compared with model group were significantly increased(P<0.05),and combine traditional Chinese and western medicine group is the traditional Chinese medicine and western medicine group on the improvement of the function of EPCs effect more significantly(P<0.05).Conclusion:Statins combined with Buyang Huanwu Decoction can better improve the endothelial function of AMI rats than traditional Chinese medicine or western medicine.Further clinical studies on statins may better improve the endothelial function of AMI patients,and provide a new research entry point for improving the long-term prognosis of AMI patients.
基金supported by the National Natural Science Foundation of China(No.81200105)the Scientific Research Foundation of Wuhan Union Hospital(No.02.03.2017-34)+3 种基金the Natural Science Foundation of Hubei Province of China(No.2015CFB457)the China Postdoctoral Science Foundation(No.20100470050)Canadian Institute of Health Research(CIHR)(No.200806RMF-189873-RMC-CDAA-42533)National Research Council of Canada(NRC)
文摘Adipose-derived stem cells(ASCs) induce therapeutic angiogenesis due to pro-angiogenic cytokines secretion. Superparamagnetic iron oxide(SPIO) nanoparticles are critical for magnetic resonance(MR) tracking of implanted cells. Hypoxia is a powerful stimulus for angiogenic activity of ASCs. In this study, we investigated whether therapeutic potency could be enhanced by implantation of hypoxia-preconditioned SPIO-labeled ASCs(SPIOASCs) into the infarcted myocardium. ASCs and SPIOASCs were cultured under 2% O_2(hypoxia) or 95% air(normoxia). Cells were intramyocardially injected into the infarcted myocardium after 48-h culture. We found that hypoxia culture increased the m RNA expression of hypoxia-inducible factor-1 alpha(HIF-1α) and vascular endothelial growth factor(VEGF) in ASCs and SPIOASCs. The VEGF protein in the conditioned medium was significantly higher in hypoxic ASCs and SPIOASCs than in normoxic ASCs and SPIOASCs. The capillary density and left ventricular contractile function in the infarcted myocardium were significantly higher 4 weeks after implantation with hypoxic ASCs and SPIOASCs than with normoxic ASCs and SPIOASCs. Improvement in the capillary density and left ventricle function didn't differ between hypoxic ASCs-transplanted rats and hypoxic SPIOASCs-transplanted rats. Hypoxic culture enhanced the angiogenic efficiency of ASCs. It was concluded that implantation of hypoxic ASCs or SPIOASCs promotes therapeutic angiogenesis and cardiac function recovery in the infarcted myocardium. SPIO labeling does not impact the beneficial effect of hypoxic ASCs.
文摘Post-myocardial infarction(MI),the left ventricle(LV)undergoes a series of events collectively referred to as remodeling.As a result,damaged myocardium is replaced with fibrotic tissue consequently leading to contractile dysfunction and ultimately heart failure.LV remodeling post-MI includes inflammatory,fibrotic,and neovascularization responses that involve regulated cell recruitment and function.Stem cells(SCs)have been transplanted post-MI for treatment of LV remodeling and shown to improve LV function by reduction in scar tissue formation in humans and animal models of MI.The promising results obtained from the application of SCs post-MI have sparked a massive effort to identify the optimal SC for regeneration of cardiomyocytes and the paradigm for clinical applications.Although SC transplantations are generally associated with new tissue formation,SCs also secrete cytokines,chemokines and growth factors that robustly regulate cell behavior in a paracrine fashion during the remodeling process.In this review,the different types of SCs used for cardiomyogenesis,markers of differentiation,paracrine factor secretion,and strategies for cell recruitment and delivery are addressed.
基金the National Natural Science Foundation of China,No.39700048, 30271378a grant from Education Bureau of Guangzhou,No.61092a grant from Science and Technology Department of Guangdong Province,No. 2009B030801354
文摘In the present study, olfactory ensheathing cells were transplanted into the cortices of infarcted (infarct transplantation group), normal (normal transplantation group), and bilateral hemispheres (bilateral transplantation group). Olfactory ensheathing cells migrated to the infarct focus. The number of growth associated protein 43-positive cells and nerve fibers was slightly increased in the infarct area. These changes were more evident in the bilateral cortical transplantation group. Results demonstrated that transplanted olfactory ensheathing cells can migrate in rats with cerebra infarction. The olfactory ensheathing cells on the normal side can also promote neurological function. Bilateral cortical transplantation exhibited superior effects over unilateral transplantation.