The nuclear data of n+^(240;242;244)Pu reactions for incident energy below 200 MeV are calculated and evaluated to meet the requirement in the design of an accelerator-driven subcritical system. The optical model is u...The nuclear data of n+^(240;242;244)Pu reactions for incident energy below 200 MeV are calculated and evaluated to meet the requirement in the design of an accelerator-driven subcritical system. The optical model is used to calculate the total, nonelastic, shape elastic cross sections, shape elastic scattering angular distributions, and transmission coefficients. The distorted-wave Born approximation is applied to calculate the direct inelastic scatterings to the discrete excited states. The nuclear reaction statistical models and fission theory are applied to describe neutron, proton, deuteron, triton, helium-3, alpha and c emissions, and fission consistently. The results thus obtained are compared with experimental data and the evaluated data obtained from ENDF/B-VII.1 and JENDL-4.0.展开更多
Pre-neutron fragment mass yields in the vicinity of the thermal neutron energy are highly important for applications because of the larger fission cross sections of the^(235)U(n,f)and^(239)Pu(n,f)reactions.In this pap...Pre-neutron fragment mass yields in the vicinity of the thermal neutron energy are highly important for applications because of the larger fission cross sections of the^(235)U(n,f)and^(239)Pu(n,f)reactions.In this paper,preneutron fragment mass yields at incident energies from thermal up to 20 MeV are systematically studied using an empirical fission potential(EFP)model,the potential parameters of which are obtained from the measured data.The energy dependences of the peaks and valleys of the pre-neutron fragment mass yields are described by exponential and linear functions for the^(235)U(n,f)and^(239)Pu(n,f)reactions,respectively.The energy dependences of the evaporation neutrons,which play a crucial role in the reasonable description of pre-neutron fragment mass yields,are also obtained from the fission cross sections.The pre-neutron fragment mass yields in this study are not only consistent with the results of previous studies in regions of several Me Vs but also agree well with existing measured data at incident energies from thermal up to 20 MeV.The results show that the feasibility of this EFP model is verified in this extended energy region.展开更多
基金supported by the National Natural Science Foundation of China-NSAF(No.U1630122)IAEA Coordinated Research Projects(CRPs)on Recommended Input Parameter Library(RIPL)for Fission Cross Section Calculations(No.20464)
文摘The nuclear data of n+^(240;242;244)Pu reactions for incident energy below 200 MeV are calculated and evaluated to meet the requirement in the design of an accelerator-driven subcritical system. The optical model is used to calculate the total, nonelastic, shape elastic cross sections, shape elastic scattering angular distributions, and transmission coefficients. The distorted-wave Born approximation is applied to calculate the direct inelastic scatterings to the discrete excited states. The nuclear reaction statistical models and fission theory are applied to describe neutron, proton, deuteron, triton, helium-3, alpha and c emissions, and fission consistently. The results thus obtained are compared with experimental data and the evaluated data obtained from ENDF/B-VII.1 and JENDL-4.0.
基金Supported by the National Natural Science Foundation of China(12065003)the Natural Science Foundation of Guangxi(2019GXNSFDA185011)+2 种基金the Key Laboratory of Neutron Physics China Academy of Engineering Physics(2018BA03)the Scientific Research and Technology Development Project of Guilin(20210104-2)the Central Government Guides Local Scientic and Technological Development Funds of China(Guike ZY22096024)。
文摘Pre-neutron fragment mass yields in the vicinity of the thermal neutron energy are highly important for applications because of the larger fission cross sections of the^(235)U(n,f)and^(239)Pu(n,f)reactions.In this paper,preneutron fragment mass yields at incident energies from thermal up to 20 MeV are systematically studied using an empirical fission potential(EFP)model,the potential parameters of which are obtained from the measured data.The energy dependences of the peaks and valleys of the pre-neutron fragment mass yields are described by exponential and linear functions for the^(235)U(n,f)and^(239)Pu(n,f)reactions,respectively.The energy dependences of the evaporation neutrons,which play a crucial role in the reasonable description of pre-neutron fragment mass yields,are also obtained from the fission cross sections.The pre-neutron fragment mass yields in this study are not only consistent with the results of previous studies in regions of several Me Vs but also agree well with existing measured data at incident energies from thermal up to 20 MeV.The results show that the feasibility of this EFP model is verified in this extended energy region.