Searching for special solitary wave solutions with compact support is of important significance in soliton theory. In this paper, to understand the role of nonlinear dispersion in pattern formation, a family of the re...Searching for special solitary wave solutions with compact support is of important significance in soliton theory. In this paper, to understand the role of nonlinear dispersion in pattern formation, a family of the regularized long-wave Boussinesq equations with fully nonlinear dispersion (simply called equations), ( const.), is studied. New solitary wave solutions with compact support of equations are found. In addition we find another compacton solutions of the two special cases, equation and equation. It is found that the nonlinear dispersion term in a nonlinear evolution equation is not a necessary condition of that it possesses compacton solutions.展开更多
A cell centered scheme for three dimensional Navier Stokes equations, which is based on central difference approximations and Runge Kutta time stepping, is described. By using local time stepping, implicit residual sm...A cell centered scheme for three dimensional Navier Stokes equations, which is based on central difference approximations and Runge Kutta time stepping, is described. By using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, good convergence rates are obtained for two and three dimensional flows. The emphases are on the implicit smoothing and artificial dissipative terms with locally variable coefficients which depend on cel...展开更多
We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as ...We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as the solitons do during a completely elastic interaction, in the and even models, and dromion solutions (exponentially decaying solutions in all direction) in many and models. In this paper, symmetry reductions in are considered for the break soliton-type equation with fully nonlinear dispersion (called equation) , which is a generalized model of break soliton equation , by using the extended direct reduction method. As a result, six types of symmetry reductions are obtained. Starting from the reduction equations and some simple transformations, we obtain the solitary wave solutions of equations, compacton solutions of equations and the compacton-like solution of the potential form (called ) . In addition, we show that the variable admits dromion solutions rather than the field itself in equation.展开更多
In this paper, using the Hirota's bilineax method, we consider the N = 1 supersymmetric Sawada-Kotera- Ramani equation and obtain the Bazcklund transformation of it. Its one- and two-supersoliton solutions axe obtain...In this paper, using the Hirota's bilineax method, we consider the N = 1 supersymmetric Sawada-Kotera- Ramani equation and obtain the Bazcklund transformation of it. Its one- and two-supersoliton solutions axe obtained and N-supersoliton solutions for N ≥ 3 are given under the condition kiξj = kjξi.展开更多
In this paper, we establish exact solutions for the .R(m,n) equations by using an sn-cn metnou,As a result, abundant new cornpactons, i,e, solitons with the absence of infinite wings, new type of Jacobi elliptic fun...In this paper, we establish exact solutions for the .R(m,n) equations by using an sn-cn metnou,As a result, abundant new cornpactons, i,e, solitons with the absence of infinite wings, new type of Jacobi elliptic function, solitary wave and periodic wave solutions, of this equation are obtained with minimal calculations. The properties of the R(m, n) equations are shown in figures.展开更多
In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split i...In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.展开更多
This paper deals with the inertial manifold and the approximate inertialmanifold concepts of the Navier-Stokes equations with nonhomogeneous boundary conditions and inertial algorithm. Furtheremore,we provide the erro...This paper deals with the inertial manifold and the approximate inertialmanifold concepts of the Navier-Stokes equations with nonhomogeneous boundary conditions and inertial algorithm. Furtheremore,we provide the error estimates of the approximate solutions of the Navier-Stokes Equations.展开更多
The asymptotic behaviour of solutions of three-dimensional nonlinear elastodynamics in a thin shell is considered,as the thickness h of the shell tends to zero.Given the appropriate scalings of the applied force and o...The asymptotic behaviour of solutions of three-dimensional nonlinear elastodynamics in a thin shell is considered,as the thickness h of the shell tends to zero.Given the appropriate scalings of the applied force and of the initial data in terms of h,it’s verified that three-dimesional solutions of the nonlinear elastodynamic equations converge to solutions of the time-dependent von Kármán equations or dynamic linear equations for shell of arbitrary geometry.展开更多
By discussing the zeros of periodic.solutions we give in this paper a criterion for the existence of exactly n+1 simple 4-periodic solutions of the differential delay equation x(T)= -f(x(t-1)).
An impeller is the most important component affecting the performance of centrifugal fans. The flow in the impeller is very complicated, and the 3\|D viscous flow is difficult to simulate numerically. This paper prese...An impeller is the most important component affecting the performance of centrifugal fans. The flow in the impeller is very complicated, and the 3\|D viscous flow is difficult to simulate numerically. This paper presents a numerical method for simulating the flow in practical commercial impellers. The predictions are compared with experimentally measured fan performance results. The predicted total pressure and efficiency for two fan models, whose optimum designs were determined by this method, agree well with the measured data for the design flow rate. The results show that the aerodynamic and noise levels for these two models are excellent. The paper also presents several new ideas about the shape of the front plate and the blade flow pattern to improve the flow in an impeller channel. The practical simulation methodology and results developed here will be very useful to the fan industry in the future.展开更多
A new lattice Boltzmann model for compressible flows is presented. The main difference from the standard lattice Boltzmann model is that the particle velocities are no longer constant, but vary with the mean velocity ...A new lattice Boltzmann model for compressible flows is presented. The main difference from the standard lattice Boltzmann model is that the particle velocities are no longer constant, but vary with the mean velocity and internal energy. The adaptive nature of the particle velocities permits the mean flow to have a high Mach number. The introduction of a particle potential energy makes the model suitable for a perfect gas with arbitrary specific heat ratio. The Navier Stokes (N\|S) equations are derived by the Chapman Enskog method from the BGK Boltzmann equation. Two kinds of simulations have been carried out on the hexagonal lattice to test the proposed model. One is the Sod shock tube simulation. The other is a strong shock of Mach number 5 09 diffracting around a corner.展开更多
Numerical method is used to simulate the air breathing near the outlet of human nose. The process of breathing is visualized. The distribution of the exhausted air density may be useful in designing the medical equipm...Numerical method is used to simulate the air breathing near the outlet of human nose. The process of breathing is visualized. The distribution of the exhausted air density may be useful in designing the medical equipments.展开更多
Given a binary quadratic polynomial f(x_(1),x_(2))=αx_(1)^(2)+βx_(1)x_(2)+γx_(2)^(2)∈Z[x_(1),x_(2)],for every c∈Z and n≥2,we study the number of solutions NJ(f;c,n)of the congruence equation f(x_(1),x_(2))≡c mo...Given a binary quadratic polynomial f(x_(1),x_(2))=αx_(1)^(2)+βx_(1)x_(2)+γx_(2)^(2)∈Z[x_(1),x_(2)],for every c∈Z and n≥2,we study the number of solutions NJ(f;c,n)of the congruence equation f(x_(1),x_(2))≡c mod n in(Z/nZ)^(2) such that xi∈(Z/nZ)^(×)for i∈J⊆{1,2}.展开更多
基金National Key Basic Research Development Project Program of China under Grant,Doctoral Foundation of China under Grant,国家自然科学基金
文摘Searching for special solitary wave solutions with compact support is of important significance in soliton theory. In this paper, to understand the role of nonlinear dispersion in pattern formation, a family of the regularized long-wave Boussinesq equations with fully nonlinear dispersion (simply called equations), ( const.), is studied. New solitary wave solutions with compact support of equations are found. In addition we find another compacton solutions of the two special cases, equation and equation. It is found that the nonlinear dispersion term in a nonlinear evolution equation is not a necessary condition of that it possesses compacton solutions.
文摘A cell centered scheme for three dimensional Navier Stokes equations, which is based on central difference approximations and Runge Kutta time stepping, is described. By using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, good convergence rates are obtained for two and three dimensional flows. The emphases are on the implicit smoothing and artificial dissipative terms with locally variable coefficients which depend on cel...
文摘We have found two types of important exact solutions, compacton solutions, which are solitary waves with the property that after colliding with their own kind, they re-emerge with the same coherent shape very much as the solitons do during a completely elastic interaction, in the and even models, and dromion solutions (exponentially decaying solutions in all direction) in many and models. In this paper, symmetry reductions in are considered for the break soliton-type equation with fully nonlinear dispersion (called equation) , which is a generalized model of break soliton equation , by using the extended direct reduction method. As a result, six types of symmetry reductions are obtained. Starting from the reduction equations and some simple transformations, we obtain the solitary wave solutions of equations, compacton solutions of equations and the compacton-like solution of the potential form (called ) . In addition, we show that the variable admits dromion solutions rather than the field itself in equation.
文摘In this paper, using the Hirota's bilineax method, we consider the N = 1 supersymmetric Sawada-Kotera- Ramani equation and obtain the Bazcklund transformation of it. Its one- and two-supersoliton solutions axe obtained and N-supersoliton solutions for N ≥ 3 are given under the condition kiξj = kjξi.
文摘In this paper, we establish exact solutions for the .R(m,n) equations by using an sn-cn metnou,As a result, abundant new cornpactons, i,e, solitons with the absence of infinite wings, new type of Jacobi elliptic function, solitary wave and periodic wave solutions, of this equation are obtained with minimal calculations. The properties of the R(m, n) equations are shown in figures.
基金financially supported by the National Natural Science Foundation of China(Grant No.51349011)the Foundation of Si’chuan Educational Committee(Grant No.17ZB0452)+1 种基金the Innovation Team Project of Si’chuan Educational Committee(Grant No.18TD0019)the Longshan Academic Talent Research Support Program of the Southwest of Science and Technology(Grant Nos.18LZX715 and 18LZX410)
文摘In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.
文摘This paper deals with the inertial manifold and the approximate inertialmanifold concepts of the Navier-Stokes equations with nonhomogeneous boundary conditions and inertial algorithm. Furtheremore,we provide the error estimates of the approximate solutions of the Navier-Stokes Equations.
基金the National Science Foundation of China under Grant Nos.61473126 and61573342Key Research Program of Frontier Sciences+1 种基金CASunder Grant No.QYZDJ-SSW-SYS011。
文摘The asymptotic behaviour of solutions of three-dimensional nonlinear elastodynamics in a thin shell is considered,as the thickness h of the shell tends to zero.Given the appropriate scalings of the applied force and of the initial data in terms of h,it’s verified that three-dimesional solutions of the nonlinear elastodynamic equations converge to solutions of the time-dependent von Kármán equations or dynamic linear equations for shell of arbitrary geometry.
基金Chinese National Foundation for Natural Sciences.
文摘By discussing the zeros of periodic.solutions we give in this paper a criterion for the existence of exactly n+1 simple 4-periodic solutions of the differential delay equation x(T)= -f(x(t-1)).
文摘An impeller is the most important component affecting the performance of centrifugal fans. The flow in the impeller is very complicated, and the 3\|D viscous flow is difficult to simulate numerically. This paper presents a numerical method for simulating the flow in practical commercial impellers. The predictions are compared with experimentally measured fan performance results. The predicted total pressure and efficiency for two fan models, whose optimum designs were determined by this method, agree well with the measured data for the design flow rate. The results show that the aerodynamic and noise levels for these two models are excellent. The paper also presents several new ideas about the shape of the front plate and the blade flow pattern to improve the flow in an impeller channel. The practical simulation methodology and results developed here will be very useful to the fan industry in the future.
文摘A new lattice Boltzmann model for compressible flows is presented. The main difference from the standard lattice Boltzmann model is that the particle velocities are no longer constant, but vary with the mean velocity and internal energy. The adaptive nature of the particle velocities permits the mean flow to have a high Mach number. The introduction of a particle potential energy makes the model suitable for a perfect gas with arbitrary specific heat ratio. The Navier Stokes (N\|S) equations are derived by the Chapman Enskog method from the BGK Boltzmann equation. Two kinds of simulations have been carried out on the hexagonal lattice to test the proposed model. One is the Sod shock tube simulation. The other is a strong shock of Mach number 5 09 diffracting around a corner.
文摘Numerical method is used to simulate the air breathing near the outlet of human nose. The process of breathing is visualized. The distribution of the exhausted air density may be useful in designing the medical equipments.
基金supported by National Natural Science Foundation of China(Grant No.11571328).
文摘Given a binary quadratic polynomial f(x_(1),x_(2))=αx_(1)^(2)+βx_(1)x_(2)+γx_(2)^(2)∈Z[x_(1),x_(2)],for every c∈Z and n≥2,we study the number of solutions NJ(f;c,n)of the congruence equation f(x_(1),x_(2))≡c mod n in(Z/nZ)^(2) such that xi∈(Z/nZ)^(×)for i∈J⊆{1,2}.