本文受到SICA(smooth integration of counting and absolute deviation)方法的启发,提出一族基于反正切函数的非凸罚函数Arctan LASSO(Arctangent least absolute shrinkage and selection operator),该罚函数可以进行参数估计和变量选...本文受到SICA(smooth integration of counting and absolute deviation)方法的启发,提出一族基于反正切函数的非凸罚函数Arctan LASSO(Arctangent least absolute shrinkage and selection operator),该罚函数可以进行参数估计和变量选取,而且提供了一种有效的平滑方法从L_0过渡到L_1罚函数,渐近性质表明Arctan LASSO估计量具有n^(1/2)相合性和oracle性质.本文结合LLA(local linear approximation)和坐标下降法给出一种有效的迭代算法,并且基于BIC(Bayesian information criterion)准则选出合适的正则化参数.模拟数据分析显示Arctan LASSO在估计精度和变量选取方面有较好的表现,估计效果类似于SICA,而且通常优于LASSO、SCAD(smoothly clipped absolute deviation)、MCP(minimax concave penalty)和自适应LASSO.该方法在实际数据中可以用于变量选取的研究,具有重要的实际意义.展开更多
文摘本文受到SICA(smooth integration of counting and absolute deviation)方法的启发,提出一族基于反正切函数的非凸罚函数Arctan LASSO(Arctangent least absolute shrinkage and selection operator),该罚函数可以进行参数估计和变量选取,而且提供了一种有效的平滑方法从L_0过渡到L_1罚函数,渐近性质表明Arctan LASSO估计量具有n^(1/2)相合性和oracle性质.本文结合LLA(local linear approximation)和坐标下降法给出一种有效的迭代算法,并且基于BIC(Bayesian information criterion)准则选出合适的正则化参数.模拟数据分析显示Arctan LASSO在估计精度和变量选取方面有较好的表现,估计效果类似于SICA,而且通常优于LASSO、SCAD(smoothly clipped absolute deviation)、MCP(minimax concave penalty)和自适应LASSO.该方法在实际数据中可以用于变量选取的研究,具有重要的实际意义.