Since 2012, the MOOCs, the massive open online courses, have brought big influences on the higher education in the world. How to use MOOCs to help universities rather than bother them to improve their education level ...Since 2012, the MOOCs, the massive open online courses, have brought big influences on the higher education in the world. How to use MOOCs to help universities rather than bother them to improve their education level and quality becomes an important issue. In China, many universities have explored the new modes and approaches for MOOC/SPOC-based teaching and learning. Especially, the China MOOC Association on Computing Education(CMOOC association), established in 2014, has done a set of successful practice and achieved fruitful experiences on MOOC courses development and computer education reform. Based on the practical experiences, a MOOC/SPOC based "1+M+N" multi-university collaborative teaching and learning mode is presented, which is adapted to the real situation of Chinese university education. In the paper, the practices and experiences of CMOOC association are introduced, the MOOC/SPOC based "1+M+N" multi-university collaborative teaching and learning mode and its approaches are described. Finally, the suggestions for MOOCs development and applications are also presented.展开更多
The effects of Mo on the microstructure and mechanical properties of Ti(C,N)-based cermets with low Ni have been studied systematically. Different contents of Mo (4-12 wt.%) were added into Tl(C,N)-based cermets...The effects of Mo on the microstructure and mechanical properties of Ti(C,N)-based cermets with low Ni have been studied systematically. Different contents of Mo (4-12 wt.%) were added into Tl(C,N)-based cermets. Specimens were fabricated by conventional powder metallurgy and vacuum sintered at temperatures of 1440, 1450, and 1460℃ individually. The microstructure and fracture morphology were investigated by scanning electron microscope, and the mechanical properties such as transverse strength and hardness were measured. The results show that the microstructure is uniform and the thickness of rim phase is moderate when the content of Mo is 8 wt.%; the mechanical properties of the specimens sintered at 1450℃ are better than those sintered at 1440 and 1460℃. The integrated properties of transverse strength and hardness are the best when the content of Mo is 8 wt.% and the sintering temperature is 1450℃.展开更多
The influence of raw powder particle size on the properties and microstructures of Ti (C, N)-based cermets has been studied. The conclusions are as follows: The microstructures of cermets were composed of two kinds of...The influence of raw powder particle size on the properties and microstructures of Ti (C, N)-based cermets has been studied. The conclusions are as follows: The microstructures of cermets were composed of two kinds of grains, the one with black cores surrounded by obvious rim structures, and the other whose cores were white with unconspicuous rim structures and adhesive phase. In the cermet made from fine powders, the amount of grains with white cores was much more than that in cermet made from coarse powders. In addition, their properties were also much better.展开更多
In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that ...In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that there existed black-core grayish-rim strucmre as well as gray-core grayish-rim structure in VC-doped Ti(C,N)-based nano cermets. With the increase of VC addition, the number of gray cores in- creased, the lattice parameter of Ti(C,N) phase increased, the grain size decreased, the hardness and fracture toughness of Ti(C,N)-based nano cermets were enhanced, and nearly full densification could be achieved. However, excessive addition of VC to 1 wt% resulted in slight decrease in hardness and fracture toughness. Some deep dimples were found in the fracture surface of cermets with VC addition, which corresponded to ductile fracture.展开更多
A new kind of silicon-based biological lubricating base oil with good viscosity-temperature behavior,viscosity index,thermostability,oxidation stability and wear resistance performance was synthesized as a derivative ...A new kind of silicon-based biological lubricating base oil with good viscosity-temperature behavior,viscosity index,thermostability,oxidation stability and wear resistance performance was synthesized as a derivative of methyl oleate.Trimethylsilylation reaction was introduced to further improve methyl oleate oxidation stability and lubricity after epoxidation and open-ring reactions.The order of effectiveness of acid binding agent was N,N-diisopropylethylamine(DIEA) > pyridine > diethylamine > triethylamine,and the effects of various parameters on the trimethylsilylation reaction as well as on the silicon-oxygen bond stability and reaction yield were studied.A maximum yield of 34.54%was achieved at hydroxyl/trimethyl chlorosilane/DIEA molar ratio of1:1.25:1,reaction temperature 40℃,reaction time 1.5 h.展开更多
Ti(C,N)-based cermets were prepared with submicron powders. The microstructure evolution and characteristics during the sintering of cermet were studied by TEM, SEM, EDX and XRD. The forming mechanism of the structu...Ti(C,N)-based cermets were prepared with submicron powders. The microstructure evolution and characteristics during the sintering of cermet were studied by TEM, SEM, EDX and XRD. The forming mechanism of the structures was also studied. There exist inner rim and outer rim between the hard cores and the binder. The inner rim is enriched in Mo and W compared with the outer rim, and is formed during the solid sintering by counter diffusion of TiC, Mo2C and WC. The outer rim is formed during the liquid sintering by Ostwald ripening mechanism.展开更多
Ti(C, N)-based cermets were treated using hot isostatic pressing (HIP) at 1423 K in nitrogen. The microstructures compared with the as-sintered cermets were investigated using X-ray diffraction, scanning electron ...Ti(C, N)-based cermets were treated using hot isostatic pressing (HIP) at 1423 K in nitrogen. The microstructures compared with the as-sintered cermets were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and electron microprobe analysis. It was found that high nitrogen activity in the surface zone resulted in the formation of gradient structure. Approximately 20-1am-deep, nitrogen-rich and titanium-rich hard surface zone was introduced by the heat treatment. The nitrogen activity was the driving force that caused the transportation of the atoms through the binder, titanium towards the surface, and tungsten and molybdenum inwards. In the surface zone, the particle size became fine, the inner rim disappeared, and the volume fraction of the outer rim and the binder phase considerably reduced. Small grains of TiN, WC, Mo2C, and nitrogen-rich carbonitlide phases formed in the surface zone during the heat treatment, improving the tlibological property of the heat-treated cermet.展开更多
Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thicknes...Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thickness on the shear strength of the joints were investigated. The microstructure of welded area and the reaction products of the filler metal were examined by scanning electron microscopy (SEM), metallographic microscope (OM), energy-dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). The brazing temperature of 870℃, holding time of 15 min, and filler thickness of 0.4 mm are a set of optimum technological parameters, under which the maximum shear strength of the joints, 176.5 MPa, is achieved. The results of microstructure show that the wettability of the filler metal on Ti(C,N)-based cermet and steel is well. A mutual solution layer and a diffusion layer exist between the welding base materials and the filler metal.展开更多
The SiO2 and g-Al2O3 supported MoOx catalyst and a MoOx-SiO2 catalyst have been studied in a conventional fixed-bed flow reactor for n-alkanes isomerization. It is shown that the MoOx-SiO2 catalyst with SiO2 framewor...The SiO2 and g-Al2O3 supported MoOx catalyst and a MoOx-SiO2 catalyst have been studied in a conventional fixed-bed flow reactor for n-alkanes isomerization. It is shown that the MoOx-SiO2 catalyst with SiO2 framework, in which the bulk MoOx phase is large enough to form typical mesoporous structure, is promising in terms of its advantages of both improved mechanical strength and high catalytic properties over the supported MoOx and bulk MoOx catalyst.展开更多
By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for...By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C,N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick. When being sintered at 1 200 ℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1 200 ℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resulting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1 350 ℃ covers a wide range of 90500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2. Graphite exists in band-like shape.展开更多
基金higher education department of the Ministry of Education“Exploration and application and promotion of the teaching model of higher education based on MOOC”research and practice project2016 Shandong province undergraduate universities teaching reform research project:Exploration and practice of teaching reform and innovation mode of higher education based on MOOC(No.B2016Z018),Research and application of blended teaching mode based on MOOC+SPOCs+flipped classroom(No.B2016Z020)
文摘Since 2012, the MOOCs, the massive open online courses, have brought big influences on the higher education in the world. How to use MOOCs to help universities rather than bother them to improve their education level and quality becomes an important issue. In China, many universities have explored the new modes and approaches for MOOC/SPOC-based teaching and learning. Especially, the China MOOC Association on Computing Education(CMOOC association), established in 2014, has done a set of successful practice and achieved fruitful experiences on MOOC courses development and computer education reform. Based on the practical experiences, a MOOC/SPOC based "1+M+N" multi-university collaborative teaching and learning mode is presented, which is adapted to the real situation of Chinese university education. In the paper, the practices and experiences of CMOOC association are introduced, the MOOC/SPOC based "1+M+N" multi-university collaborative teaching and learning mode and its approaches are described. Finally, the suggestions for MOOCs development and applications are also presented.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50074017) the Natural Science Foundation of Hubei Province, China (No. 2003ABA092).
文摘The effects of Mo on the microstructure and mechanical properties of Ti(C,N)-based cermets with low Ni have been studied systematically. Different contents of Mo (4-12 wt.%) were added into Tl(C,N)-based cermets. Specimens were fabricated by conventional powder metallurgy and vacuum sintered at temperatures of 1440, 1450, and 1460℃ individually. The microstructure and fracture morphology were investigated by scanning electron microscope, and the mechanical properties such as transverse strength and hardness were measured. The results show that the microstructure is uniform and the thickness of rim phase is moderate when the content of Mo is 8 wt.%; the mechanical properties of the specimens sintered at 1450℃ are better than those sintered at 1440 and 1460℃. The integrated properties of transverse strength and hardness are the best when the content of Mo is 8 wt.% and the sintering temperature is 1450℃.
基金the National Natural Science Foundation of China, the Doctoral EducationFoundation of China, the State Key Laboratory of Powde
文摘The influence of raw powder particle size on the properties and microstructures of Ti (C, N)-based cermets has been studied. The conclusions are as follows: The microstructures of cermets were composed of two kinds of grains, the one with black cores surrounded by obvious rim structures, and the other whose cores were white with unconspicuous rim structures and adhesive phase. In the cermet made from fine powders, the amount of grains with white cores was much more than that in cermet made from coarse powders. In addition, their properties were also much better.
基金financially supported by National Natural Science Foundation of China (No.50874076 and No.51074110)the Scientist Serving Enterprise Action Plan from Ministry of Science and Technology (No.2009GJF00030)
文摘In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that there existed black-core grayish-rim strucmre as well as gray-core grayish-rim structure in VC-doped Ti(C,N)-based nano cermets. With the increase of VC addition, the number of gray cores in- creased, the lattice parameter of Ti(C,N) phase increased, the grain size decreased, the hardness and fracture toughness of Ti(C,N)-based nano cermets were enhanced, and nearly full densification could be achieved. However, excessive addition of VC to 1 wt% resulted in slight decrease in hardness and fracture toughness. Some deep dimples were found in the fracture surface of cermets with VC addition, which corresponded to ductile fracture.
基金Supported by the National Natural Science Foundation of China(21306088)National Key Technologies R&D Program of China(2015BAD15B07)+1 种基金State Key Laboratory of Chemical Engineering(SKL-Ch E-13A01,Tsinghua University,China)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,China)
文摘A new kind of silicon-based biological lubricating base oil with good viscosity-temperature behavior,viscosity index,thermostability,oxidation stability and wear resistance performance was synthesized as a derivative of methyl oleate.Trimethylsilylation reaction was introduced to further improve methyl oleate oxidation stability and lubricity after epoxidation and open-ring reactions.The order of effectiveness of acid binding agent was N,N-diisopropylethylamine(DIEA) > pyridine > diethylamine > triethylamine,and the effects of various parameters on the trimethylsilylation reaction as well as on the silicon-oxygen bond stability and reaction yield were studied.A maximum yield of 34.54%was achieved at hydroxyl/trimethyl chlorosilane/DIEA molar ratio of1:1.25:1,reaction temperature 40℃,reaction time 1.5 h.
文摘Ti(C,N)-based cermets were prepared with submicron powders. The microstructure evolution and characteristics during the sintering of cermet were studied by TEM, SEM, EDX and XRD. The forming mechanism of the structures was also studied. There exist inner rim and outer rim between the hard cores and the binder. The inner rim is enriched in Mo and W compared with the outer rim, and is formed during the solid sintering by counter diffusion of TiC, Mo2C and WC. The outer rim is formed during the liquid sintering by Ostwald ripening mechanism.
基金financially supported by the National Natural Science Foundation of China (Nos. 50074017 and 50104006)the Opening Fund of the Hubei Province Key Laboratory of Ceramics and Refractories of China (No. G0507)the Opening Fund of State Key Laboratory of Plastic Forming Simulation and Die & Mould Technology of China (No. 05-13)
文摘Ti(C, N)-based cermets were treated using hot isostatic pressing (HIP) at 1423 K in nitrogen. The microstructures compared with the as-sintered cermets were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and electron microprobe analysis. It was found that high nitrogen activity in the surface zone resulted in the formation of gradient structure. Approximately 20-1am-deep, nitrogen-rich and titanium-rich hard surface zone was introduced by the heat treatment. The nitrogen activity was the driving force that caused the transportation of the atoms through the binder, titanium towards the surface, and tungsten and molybdenum inwards. In the surface zone, the particle size became fine, the inner rim disappeared, and the volume fraction of the outer rim and the binder phase considerably reduced. Small grains of TiN, WC, Mo2C, and nitrogen-rich carbonitlide phases formed in the surface zone during the heat treatment, improving the tlibological property of the heat-treated cermet.
基金supported by the National Natural Science Foundation of China (No. 50074014)
文摘Firm joins were obtained between Ti(C,N)-based cermet and steel with Ag-Cu-Zn-Ni filler metal by vacuum brazing. The effects of technological parameters such as brazing temperature, holding time, and filler thickness on the shear strength of the joints were investigated. The microstructure of welded area and the reaction products of the filler metal were examined by scanning electron microscopy (SEM), metallographic microscope (OM), energy-dispersive X-ray analysis (EDS), and X-ray diffraction (XRD). The brazing temperature of 870℃, holding time of 15 min, and filler thickness of 0.4 mm are a set of optimum technological parameters, under which the maximum shear strength of the joints, 176.5 MPa, is achieved. The results of microstructure show that the wettability of the filler metal on Ti(C,N)-based cermet and steel is well. A mutual solution layer and a diffusion layer exist between the welding base materials and the filler metal.
文摘The SiO2 and g-Al2O3 supported MoOx catalyst and a MoOx-SiO2 catalyst have been studied in a conventional fixed-bed flow reactor for n-alkanes isomerization. It is shown that the MoOx-SiO2 catalyst with SiO2 framework, in which the bulk MoOx phase is large enough to form typical mesoporous structure, is promising in terms of its advantages of both improved mechanical strength and high catalytic properties over the supported MoOx and bulk MoOx catalyst.
文摘By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C,N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick. When being sintered at 1 200 ℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1 200 ℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resulting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1 350 ℃ covers a wide range of 90500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2. Graphite exists in band-like shape.