We present a novel electrochemical technique for the fabrication of nano-photonic crystal structures. Based on a specially designed electrolyte, porous silicon(PSi) layers with different porosities are possible to be ...We present a novel electrochemical technique for the fabrication of nano-photonic crystal structures. Based on a specially designed electrolyte, porous silicon(PSi) layers with different porosities are possible to be produced on highly-doped n-type silicon substrate by varying the applied current density which determines the size and the morphology of pores. By applying an alternative current density modulation during anodization, porous silicon photonic crystals are obtained using HF-containing electrolyte without oxidizing components. The current burst model(CBM) is employed to interpret the mechanism of the formation of the macropore porous silicon.展开更多
基金supported by the National Natural Science Foundation of China(No.61265009)the Excellent Youth Foundation of Shihezi University(No.2012ZRKXYQ-YD20)the Doctoral Research Foundation of Shihezi University(No.RCZX201327)
文摘We present a novel electrochemical technique for the fabrication of nano-photonic crystal structures. Based on a specially designed electrolyte, porous silicon(PSi) layers with different porosities are possible to be produced on highly-doped n-type silicon substrate by varying the applied current density which determines the size and the morphology of pores. By applying an alternative current density modulation during anodization, porous silicon photonic crystals are obtained using HF-containing electrolyte without oxidizing components. The current burst model(CBM) is employed to interpret the mechanism of the formation of the macropore porous silicon.