By virtue of the technique of integration within an ordered product of operators and the fundamentaloperator identity Hn(X) = 2n : Xn :, where X is the coordinate operator and Hn is the n-order Hermite polynomials,:: ...By virtue of the technique of integration within an ordered product of operators and the fundamentaloperator identity Hn(X) = 2n : Xn :, where X is the coordinate operator and Hn is the n-order Hermite polynomials,:: is the normal ordering symbol, we not only simplify the derivation of the main properties of Hermite polynomials,but also directly derive some new operator identities regarding to Hn(X). Operation for transforming f(X) → :f(X) :is also discussed.展开更多
文摘By virtue of the technique of integration within an ordered product of operators and the fundamentaloperator identity Hn(X) = 2n : Xn :, where X is the coordinate operator and Hn is the n-order Hermite polynomials,:: is the normal ordering symbol, we not only simplify the derivation of the main properties of Hermite polynomials,but also directly derive some new operator identities regarding to Hn(X). Operation for transforming f(X) → :f(X) :is also discussed.