Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assig...Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assigned to n-π^(*)electronic transitions involving the two lone pairs on sulfur(TLPS).The as-prepared samples,denoted as CN-ThAx(where x indicates the amount of ThA added,mg),showed an additional absorption above 500 nm as compared to pristine g-C_(3)N_(4).Further,the thiophene group enhanced charge carrier separation to suppress e‒/h+pair recombination.The experimental results suggest that the thiophene group can obstruct the polymerization of melem to generate a large plane,thus exposing the lone electron pairs on the sulfur.The photocatalytic activity was evaluated in the decomposition of bisphenol A and H2 evolution.Compared with g-C_(3)N_(4),the optimized CN-ThA_(30) sample led to a 6.6-and 2-fold enhancement of the degradation and H2 generation rates,respectively.The CN-ThA_(30) sample allowed for synchronous H2 production and BPA decomposition.展开更多
The n-π^(*) electronic transition in polymeric carbon nitride(PCN)can remarkably harvest visible light,which thus potentially promotes the photocatalytic hydrogen H2 generation.However,awaking the n-π^(*) lectronic ...The n-π^(*) electronic transition in polymeric carbon nitride(PCN)can remarkably harvest visible light,which thus potentially promotes the photocatalytic hydrogen H2 generation.However,awaking the n-π^(*) lectronic transition has proven to be a grand challenge.Herein,we reported on the awakening of n-π^(*) electronic transition by microwave thermolysis of urea pellet,which yielded the PCN with absorption edge of 600 nm,near 140 nm red-shift from 460 nm of pristine PCN.The n-π^(*) electronic transition endows PCN with an increased photocata lytic H_(2) generation,with a highest H_(2) rate of 61.7μmol h^(-1) under visible light exposure,which is near 6 times higher than that by using the PCN from the thermolysis of urea pellets in an electric furnace(10.6μmol h^(-1)).Furthermore,the n-π^(*) transition in PCN leads to the longest wavelength of 535 nm that can initiate H2 generation,remarkably longer than the absorption edge of pristine PCN(460 nm).This work manifests the advantages of microwave sintering route to awaken the n-π^(*) electronic transition in PCN for an increased photocata lytic performance.展开更多
Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 ℃ using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods ar...Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 ℃ using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 ℃-250 ℃. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 ℃, whereas, it behaves as a p-type semiconductor below 50 ℃. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.展开更多
文摘Expanding the optical absorption range of photocatalysts is still a key endeavor in graphitic carbon nitride(g-C_(3)N_(4))studies.Here,we report on a novel thiophene group extending the optical property,which is assigned to n-π^(*)electronic transitions involving the two lone pairs on sulfur(TLPS).The as-prepared samples,denoted as CN-ThAx(where x indicates the amount of ThA added,mg),showed an additional absorption above 500 nm as compared to pristine g-C_(3)N_(4).Further,the thiophene group enhanced charge carrier separation to suppress e‒/h+pair recombination.The experimental results suggest that the thiophene group can obstruct the polymerization of melem to generate a large plane,thus exposing the lone electron pairs on the sulfur.The photocatalytic activity was evaluated in the decomposition of bisphenol A and H2 evolution.Compared with g-C_(3)N_(4),the optimized CN-ThA_(30) sample led to a 6.6-and 2-fold enhancement of the degradation and H2 generation rates,respectively.The CN-ThA_(30) sample allowed for synchronous H2 production and BPA decomposition.
基金financially supported by the National Natural Science Foundation of China (52072001, 51872003, U1832148 and U1932218)the Anhui Provincial Natural Science Foundation (1908085J21 and 1908085QB83)。
文摘The n-π^(*) electronic transition in polymeric carbon nitride(PCN)can remarkably harvest visible light,which thus potentially promotes the photocatalytic hydrogen H2 generation.However,awaking the n-π^(*) lectronic transition has proven to be a grand challenge.Herein,we reported on the awakening of n-π^(*) electronic transition by microwave thermolysis of urea pellet,which yielded the PCN with absorption edge of 600 nm,near 140 nm red-shift from 460 nm of pristine PCN.The n-π^(*) electronic transition endows PCN with an increased photocata lytic H_(2) generation,with a highest H_(2) rate of 61.7μmol h^(-1) under visible light exposure,which is near 6 times higher than that by using the PCN from the thermolysis of urea pellets in an electric furnace(10.6μmol h^(-1)).Furthermore,the n-π^(*) transition in PCN leads to the longest wavelength of 535 nm that can initiate H2 generation,remarkably longer than the absorption edge of pristine PCN(460 nm).This work manifests the advantages of microwave sintering route to awaken the n-π^(*) electronic transition in PCN for an increased photocata lytic performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60771019,61271070,and 61274074)the Tianjin Key Research Program of Application Foundation and Advanced Technology,China(Grant No.11JCZDJC15300)
文摘Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 ℃ using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 ℃-250 ℃. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 ℃, whereas, it behaves as a p-type semiconductor below 50 ℃. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.