The Darboux transformation (DT) method is studied in a lot of local equations, but there are few of work to solve nonlocal equations by DT. In this letter, we solve the nonlocal nonlinear Schrödinger equation...The Darboux transformation (DT) method is studied in a lot of local equations, but there are few of work to solve nonlocal equations by DT. In this letter, we solve the nonlocal nonlinear Schrödinger equation (NNLSE) with the self-induced PT-symmetric potential by DT. Then the N-fold DT of NNLSE is derived with the help of the gauge transformation between the Lax pairs. Then we derive some novel exact solutions including the bright soliton, breather wave soliton. In particularly, the dynamic features of one-soliton, two-soliton, three-soliton solutions and the elastic interactions between the two solitons are displayed.展开更多
Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kau...Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kaup system whose Lax pair can be derived by the Ablowitz-Kaup-Newell-Segur technology. With symbolic computation, based on the aforementioned Lax pair, the N-fold Darboux transformation is constructed with a gauge transformation and the multi-soliton solutions are obtained. Finally, the elastic interactions of the two-soliton solutions (including the head-on and overtaking collisions) for the WBK system are graphically studied. Those multi-soliton collisions can beused to illustrate the bidirectional propagation of the waves in shallow water.展开更多
Recently,deep learning has been widely utilized for object tracking tasks.However,deep learning encounters limits in tasks such as Autonomous Aerial Refueling(AAR),where the target object can vary substantially in siz...Recently,deep learning has been widely utilized for object tracking tasks.However,deep learning encounters limits in tasks such as Autonomous Aerial Refueling(AAR),where the target object can vary substantially in size,requiring high-precision real-time performance in embedded systems.This paper presents a novel embedded adaptiveness single-object tracking framework based on an improved YOLOv4 detection approach and an n-fold Bernoulli probability theorem.First,an Asymmetric Convolutional Network(ACNet)and dense blocks are combined with the YOLOv4 architecture to detect small objects with high precision when similar objects are in the background.The prior object information,such as its location in the previous frame and its speed,is utilized to adaptively track objects of various sizes.Moreover,based on the n-fold Bernoulli probability theorem,we develop a filter that uses statistical laws to reduce the false positive rate of object tracking.To evaluate the efficiency of our algorithm,a new AAR dataset is collected,and extensive AAR detection and tracking experiments are performed.The results demonstrate that our improved detection algorithm is better than the original YOLOv4 algorithm on small and similar object detection tasks;the object tracking algorithm is better than state-of-the-art object tracking algorithms on refueling drogue tracking tasks.展开更多
Burgers-type equations can describe some phenomena in fluids,plasmas,gas dynamics,traffic,etc.In this paper,an integrable hierarchy covering the lattice Burgers equation is derived from a discrete spectral problem.N-f...Burgers-type equations can describe some phenomena in fluids,plasmas,gas dynamics,traffic,etc.In this paper,an integrable hierarchy covering the lattice Burgers equation is derived from a discrete spectral problem.N-fold Darboux transformation(DT) and conservation laws for the lattice Burgers equation are constructed based on its Lax pair.N-soliton solutions in the form of Vandermonde-like determinant are derived via the resulting DT with symbolic computation,structures of which are shown graphically.Coexistence of the elastic-inelastic interaction among the three solitons is firstly reported for the lattice Burgers equation,even if the similar phenomenon for certern continuous systems is known.Results in this paper might be helpful for understanding some ecological problems describing the evolution of competing species and the propagation of nonlinear waves in fluids.展开更多
Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its...Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its N-fold Darboux transformation is established with the help of gauge transformation of Lax pair. As an application of the Darboux transformation, some new exact solutions for a discrete equation in the negative hierarchy are obtained.展开更多
A new nonclassical crystallographic group (NCG) theoretical system is set up.This system can describe infinite kinds of nonclassical periodic structures,especially for those with locally n-fold rotational symmetries f...A new nonclassical crystallographic group (NCG) theoretical system is set up.This system can describe infinite kinds of nonclassical periodic structures,especially for those with locally n-fold rotational symmetries forbidden by the rules of the classical crystallography. The formal classification of NCGs is given.展开更多
This paper aims to introduce new notions of (fuzzy) n-fold P-ideals and (fuzzy) n-fold weak P-ideals in BCI-algebras, and investigate several properties of the foldness theory of P-ideals in BCI-algebras. Finally, we ...This paper aims to introduce new notions of (fuzzy) n-fold P-ideals and (fuzzy) n-fold weak P-ideals in BCI-algebras, and investigate several properties of the foldness theory of P-ideals in BCI-algebras. Finally, we construct a computer-program for studying the foldness theory of P-ideals in BCI-algebras.展开更多
An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrodinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the ...An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrodinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the solutions of the nonlinear Schrfdinger equation are reduced to solving a linear algebraic system, from which a unified and explicit formulation of N-soliton solutions with multiparameters for the nonlinear Schrfdinger equation is given.展开更多
基金supported by the Natural Science Foundation of Liaoning Province,China(Grant No.201602678).
文摘The Darboux transformation (DT) method is studied in a lot of local equations, but there are few of work to solve nonlocal equations by DT. In this letter, we solve the nonlocal nonlinear Schrödinger equation (NNLSE) with the self-induced PT-symmetric potential by DT. Then the N-fold DT of NNLSE is derived with the help of the gauge transformation between the Lax pairs. Then we derive some novel exact solutions including the bright soliton, breather wave soliton. In particularly, the dynamic features of one-soliton, two-soliton, three-soliton solutions and the elastic interactions between the two solitons are displayed.
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006,Chinese Ministry of Education
文摘Under investigation in this paper is the Whitham-Broer-Kaup (WBK) system, which describes the dispersive long wave in shallow water. Through a variable transformation, the WBK system is casted into a general Broer-Kaup system whose Lax pair can be derived by the Ablowitz-Kaup-Newell-Segur technology. With symbolic computation, based on the aforementioned Lax pair, the N-fold Darboux transformation is constructed with a gauge transformation and the multi-soliton solutions are obtained. Finally, the elastic interactions of the two-soliton solutions (including the head-on and overtaking collisions) for the WBK system are graphically studied. Those multi-soliton collisions can beused to illustrate the bidirectional propagation of the waves in shallow water.
文摘Recently,deep learning has been widely utilized for object tracking tasks.However,deep learning encounters limits in tasks such as Autonomous Aerial Refueling(AAR),where the target object can vary substantially in size,requiring high-precision real-time performance in embedded systems.This paper presents a novel embedded adaptiveness single-object tracking framework based on an improved YOLOv4 detection approach and an n-fold Bernoulli probability theorem.First,an Asymmetric Convolutional Network(ACNet)and dense blocks are combined with the YOLOv4 architecture to detect small objects with high precision when similar objects are in the background.The prior object information,such as its location in the previous frame and its speed,is utilized to adaptively track objects of various sizes.Moreover,based on the n-fold Bernoulli probability theorem,we develop a filter that uses statistical laws to reduce the false positive rate of object tracking.To evaluate the efficiency of our algorithm,a new AAR dataset is collected,and extensive AAR detection and tracking experiments are performed.The results demonstrate that our improved detection algorithm is better than the original YOLOv4 algorithm on small and similar object detection tasks;the object tracking algorithm is better than state-of-the-art object tracking algorithms on refueling drogue tracking tasks.
基金Supported by the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-2012ZX-10,Beijing University of Aeronautics and Astronauticsthe Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02+2 种基金the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 200800130006),Chinese Ministry of Educationthe Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No. KM201010772020
文摘Burgers-type equations can describe some phenomena in fluids,plasmas,gas dynamics,traffic,etc.In this paper,an integrable hierarchy covering the lattice Burgers equation is derived from a discrete spectral problem.N-fold Darboux transformation(DT) and conservation laws for the lattice Burgers equation are constructed based on its Lax pair.N-soliton solutions in the form of Vandermonde-like determinant are derived via the resulting DT with symbolic computation,structures of which are shown graphically.Coexistence of the elastic-inelastic interaction among the three solitons is firstly reported for the lattice Burgers equation,even if the similar phenomenon for certern continuous systems is known.Results in this paper might be helpful for understanding some ecological problems describing the evolution of competing species and the propagation of nonlinear waves in fluids.
基金Supported by the Natural Science Foundation of China under Grant Nos.11271008 and 61072147
文摘Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its N-fold Darboux transformation is established with the help of gauge transformation of Lax pair. As an application of the Darboux transformation, some new exact solutions for a discrete equation in the negative hierarchy are obtained.
文摘A new nonclassical crystallographic group (NCG) theoretical system is set up.This system can describe infinite kinds of nonclassical periodic structures,especially for those with locally n-fold rotational symmetries forbidden by the rules of the classical crystallography. The formal classification of NCGs is given.
文摘This paper aims to introduce new notions of (fuzzy) n-fold P-ideals and (fuzzy) n-fold weak P-ideals in BCI-algebras, and investigate several properties of the foldness theory of P-ideals in BCI-algebras. Finally, we construct a computer-program for studying the foldness theory of P-ideals in BCI-algebras.
文摘An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrodinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the solutions of the nonlinear Schrfdinger equation are reduced to solving a linear algebraic system, from which a unified and explicit formulation of N-soliton solutions with multiparameters for the nonlinear Schrfdinger equation is given.