Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displ...Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.展开更多
Objective To evaluate the biomechanics of hollow-compression-screw in the osteoporotic femoral neck with composite c alcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into...Objective To evaluate the biomechanics of hollow-compression-screw in the osteoporotic femoral neck with composite c alcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into two groups:augmentation group and non-augmentation group.CCPC was used in augmentation group.Result Augmentation with CCPC would improve the initial mobile force of hollow-compression-screw,the ini tial mobile force and the maximal axial pull-out strength for augmentation group,non-augmentation group in-creased from(192.7±14.0)N and(202.8±14.0)N to(328.5±34.7)N and(347.8±31.2)N.There was significant difference of two groups(P <0.01).Conclusion CCPC can enhance hollow-compressio n-screw fixation in osteoporotic fe moral neck.展开更多
The novel quaternary ammonium bromide (QAB)-containing oligomers were synthesized and applied for developing an antibacterial resin composite. Compressive strength (CS) and S. mutans (an oral bacteria strain) viabilit...The novel quaternary ammonium bromide (QAB)-containing oligomers were synthesized and applied for developing an antibacterial resin composite. Compressive strength (CS) and S. mutans (an oral bacteria strain) viability were used to evaluate the mechanical strength and antibacterial activity of the formed composites. All the QAB-modified resin composites showed significant antibacterial activity and mechanical strength reduction. Increasing chain length and loading significantly enhanced the antibacterial activity but dramatically reduced the CS as well. The 30-day aging study showed that the incorporation of the QAB accelerated the degradation of the composite, suggesting that the QAB may not be well suitable for development of antibacterial dental resin composites or at least the QAB loading should be well controlled, unlike its use in dental glass-ionomer cements. The work in this study is beneficial and valuable to those who are interested in studying antibacterial dental resin composites.展开更多
This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analyti...This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC.展开更多
This study reports the synthesis and evaluation of a novel furanone-containing antibacterial resin composite. Compres-sive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antiba...This study reports the synthesis and evaluation of a novel furanone-containing antibacterial resin composite. Compres-sive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the composites. With 5% to 30% addition of the furanone derivative, the composite showed no change in CS but a significant antibacterial activity with a 16% - 68% reduction in the S. mutans viability. Further, the antibacterial activity of the modified composite was not affected by human saliva. The aging study implies that the modified composite may have a long-lasting antibacterial function. Within the limitations of this study, it appears that this experimental resin composite may potentially be developed into a clinically attractive dental restorative due to its high mechanical strength and antibacterial function.展开更多
文摘Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.
文摘Objective To evaluate the biomechanics of hollow-compression-screw in the osteoporotic femoral neck with composite c alcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into two groups:augmentation group and non-augmentation group.CCPC was used in augmentation group.Result Augmentation with CCPC would improve the initial mobile force of hollow-compression-screw,the ini tial mobile force and the maximal axial pull-out strength for augmentation group,non-augmentation group in-creased from(192.7±14.0)N and(202.8±14.0)N to(328.5±34.7)N and(347.8±31.2)N.There was significant difference of two groups(P <0.01).Conclusion CCPC can enhance hollow-compressio n-screw fixation in osteoporotic fe moral neck.
文摘The novel quaternary ammonium bromide (QAB)-containing oligomers were synthesized and applied for developing an antibacterial resin composite. Compressive strength (CS) and S. mutans (an oral bacteria strain) viability were used to evaluate the mechanical strength and antibacterial activity of the formed composites. All the QAB-modified resin composites showed significant antibacterial activity and mechanical strength reduction. Increasing chain length and loading significantly enhanced the antibacterial activity but dramatically reduced the CS as well. The 30-day aging study showed that the incorporation of the QAB accelerated the degradation of the composite, suggesting that the QAB may not be well suitable for development of antibacterial dental resin composites or at least the QAB loading should be well controlled, unlike its use in dental glass-ionomer cements. The work in this study is beneficial and valuable to those who are interested in studying antibacterial dental resin composites.
基金supported by the National Natural Science Foundation of China(Nos.52175079 and 12072091)the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments of China(No.6142905192512)+2 种基金the Fundamental Research Funds for the Central Universities of China(No.N2103026)the Major Projects of AeroEngines and Gas Turbines of China(No.J2019-I-0008-0008)the China Postdoctoral Science Foundation(No.2020M680990)。
文摘This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC.
文摘This study reports the synthesis and evaluation of a novel furanone-containing antibacterial resin composite. Compres-sive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the composites. With 5% to 30% addition of the furanone derivative, the composite showed no change in CS but a significant antibacterial activity with a 16% - 68% reduction in the S. mutans viability. Further, the antibacterial activity of the modified composite was not affected by human saliva. The aging study implies that the modified composite may have a long-lasting antibacterial function. Within the limitations of this study, it appears that this experimental resin composite may potentially be developed into a clinically attractive dental restorative due to its high mechanical strength and antibacterial function.