The ZnO/Si heterojunction diode can be integrated with the Si process, which has attracted great attention in recent years. However, the large number of interface states at the ZnO/Si heterojunction interface could ad...The ZnO/Si heterojunction diode can be integrated with the Si process, which has attracted great attention in recent years. However, the large number of interface states at the ZnO/Si heterojunction interface could adversely affect its optoelectronic properties. Here, n-type ZnO thin film was deposited on p-Si substrate for formation of an n-ZnO/p-Si heterojunction substrate. To passivate the ZnO/Si interface, a thin Cul film interface passivation layer was inserted at the ZnO/p-Si heterojunction interface. Electrical characterization such as I-V and C-V characteristic curves confirmed the significant improvement of the heterojunction properties e.g. enhancement of forward current injection, reduction of reverse current and improvement of the rectification ratio. These results showed that the passivation of interface is critical for ZnO/Si heterojunctions.展开更多
Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown onφ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD).The initial stage of carbonization and the surface morphology of carbon...Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown onφ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD).The initial stage of carbonization and the surface morphology of carbonization layers of Si (100) are studied using reflection high energy electron diffraction (RHEED) and scanning electron microscopy (SEM).It is shown that the optimized carbonization temperature for the growth of voids-free 3C-SiC on Si (100) substrates is 1100℃.The electrical properties of SiC layers are characterized using Van der Pauw method.The I-V,C-V,and the temperature dependence of I-V characteristics in n-3C-SiC/p-Si heterojunctions with AuGeNi and Al electrical pads are investigated.It is shown that the maximum reverse breakdown voltage of the n-3C-SiC/p-Si heterojunction diodes reaches to 220V at room temperature.These results indicate that the SiC/Si heterojunction diode can be used to fabricate the wide bandgap emitter SiC/Si heterojunction bipolar transistors (HBT's).展开更多
The partial deposit films on p-silicon wafers were formed from three kinds of plating solution: chloro-platinic acid, potassium tetranitroplatinate and diammine platinium dinitrate under Nd: YAG laser irradiation. The...The partial deposit films on p-silicon wafers were formed from three kinds of plating solution: chloro-platinic acid, potassium tetranitroplatinate and diammine platinium dinitrate under Nd: YAG laser irradiation. The compositions and properties of the depositswere investigated by AES, SEM and XPS techniques. The Pt deposits have ohmic contactwith p-type silicon.展开更多
基金Project supported by the "333 High-Level Talents Training Project" in Jiangsu Province of China(No.BRA2016111)the Qing Lan Project of Jiangsu Higher Education+2 种基金the Science and Technology Program of Changzhou(No.CE20175031)the Jiangsu Province Key R&D Projects(No.BE2016200)the High-Tech Key Laboratory of Changzhou(No.CM20173003)
文摘The ZnO/Si heterojunction diode can be integrated with the Si process, which has attracted great attention in recent years. However, the large number of interface states at the ZnO/Si heterojunction interface could adversely affect its optoelectronic properties. Here, n-type ZnO thin film was deposited on p-Si substrate for formation of an n-ZnO/p-Si heterojunction substrate. To passivate the ZnO/Si interface, a thin Cul film interface passivation layer was inserted at the ZnO/p-Si heterojunction interface. Electrical characterization such as I-V and C-V characteristic curves confirmed the significant improvement of the heterojunction properties e.g. enhancement of forward current injection, reduction of reverse current and improvement of the rectification ratio. These results showed that the passivation of interface is critical for ZnO/Si heterojunctions.
文摘Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown onφ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD).The initial stage of carbonization and the surface morphology of carbonization layers of Si (100) are studied using reflection high energy electron diffraction (RHEED) and scanning electron microscopy (SEM).It is shown that the optimized carbonization temperature for the growth of voids-free 3C-SiC on Si (100) substrates is 1100℃.The electrical properties of SiC layers are characterized using Van der Pauw method.The I-V,C-V,and the temperature dependence of I-V characteristics in n-3C-SiC/p-Si heterojunctions with AuGeNi and Al electrical pads are investigated.It is shown that the maximum reverse breakdown voltage of the n-3C-SiC/p-Si heterojunction diodes reaches to 220V at room temperature.These results indicate that the SiC/Si heterojunction diode can be used to fabricate the wide bandgap emitter SiC/Si heterojunction bipolar transistors (HBT's).
文摘The partial deposit films on p-silicon wafers were formed from three kinds of plating solution: chloro-platinic acid, potassium tetranitroplatinate and diammine platinium dinitrate under Nd: YAG laser irradiation. The compositions and properties of the depositswere investigated by AES, SEM and XPS techniques. The Pt deposits have ohmic contactwith p-type silicon.