A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water...A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water samples. In the microextraction procedure, a microdrop of n-decanol was delivered to the surface of the analytes’ solution, and stirred for a desired time. Following the absolute extraction, the sample vial was cooled in an ice bath for 10 min. The solidified n-decanol was then transferred into a plastic tube and melted naturally; and 1 μL of it was injected into gas chromatography for analysis. Factors relevant to the extraction efficiency were studied and optimized. The optimal experimental conditions were: 15 μL of n-decanol as extractive solvent, 30 mL of solution containing analytes, no salt, the stirring rate 400 r/min, the extraction temperature 30 °C, and the extraction time 30 min. Under those optimized conditions, the detection limit(LOD) of analytes was in a range of 0.05―0.10 ng/mL by the developed method. A good linearity(r0.99) in a calibration range of 0.01―100 μg/mL was obtained. The recoveries of the real samples at different spiked levels of BTX were in the range from 92.2% to 103.4%.展开更多
基金Supported by the National Natural Science Foundation of China(No.21105088)the Program for Science and Technology Projects of the Education Department of Fujian Province,China(No.JA10211)
文摘A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water samples. In the microextraction procedure, a microdrop of n-decanol was delivered to the surface of the analytes’ solution, and stirred for a desired time. Following the absolute extraction, the sample vial was cooled in an ice bath for 10 min. The solidified n-decanol was then transferred into a plastic tube and melted naturally; and 1 μL of it was injected into gas chromatography for analysis. Factors relevant to the extraction efficiency were studied and optimized. The optimal experimental conditions were: 15 μL of n-decanol as extractive solvent, 30 mL of solution containing analytes, no salt, the stirring rate 400 r/min, the extraction temperature 30 °C, and the extraction time 30 min. Under those optimized conditions, the detection limit(LOD) of analytes was in a range of 0.05―0.10 ng/mL by the developed method. A good linearity(r0.99) in a calibration range of 0.01―100 μg/mL was obtained. The recoveries of the real samples at different spiked levels of BTX were in the range from 92.2% to 103.4%.