The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a c...The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods.展开更多
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a...In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm.展开更多
现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等...现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等算法获得结构的模态参数是一种有效的方法。但在数据量有限时,随机减量函数的平均次数过少,导致RD函数的收敛性较差。为此提出了利用Vector Random Decrement技术(VRDT)提取自由衰减响应信号,而后利用特征系统实现算法ERA求得模态参数的方法,新算法能够有效地提高模态参数识别精度。数值算例验证了所提算法的有效性。展开更多
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (...In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.展开更多
To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to th...To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to the statistical distribution of machining dimensions, material properties and service loads, and the system reliability optimization design with constraints and reliability optimization design of various mechanical parts is studied in this way. However, the above researches focus on solving the strength and the life problem, and no studies have been done on the discrete degree and discrete pattern of other performance indicators. The concept of using a random vector to describe the mechanical parts performance indicators is presented; characteristics between the value of the vector variance matrix determinant and the sum of the diagonal covariance matrix in describing the performance indicators of vector dispersion are studied and compared. A clutch diaphragm spring is set as an example, the geometric dimension indicator is described with random vector, and the applicability of using variance matrix determinant and variance matrix trace of geometric dimension vector to describe discrete degree of random vector is studied by using Monte-Carlo simulation method and component discrete degree perturbation method. Also, the effects of different components of diaphragm spring geometric dimension vector on the value of covariance matrix determinant and the sum of covariance matrix diagonal of diaphragm spring performance indicators vector are analyzed. The present study shows that the impacts of the dispersion of diaphragm spring cone angle on every performance dispersion are all ranked first, and far exceed that of other dimension dispersion. So it must be strictly controlled in the production process. The result of the research work provides a reference for the design of diaphragm spring, and also it presents a proper method for researching the performance of other mechanical parts.展开更多
Image signals are always disturbed by noise during their transmission, such as in mobile or network communication. The received image quality is significantly influenced by noise. Thus, image signal denoising is an in...Image signals are always disturbed by noise during their transmission, such as in mobile or network communication. The received image quality is significantly influenced by noise. Thus, image signal denoising is an indispensable step during image processing. As we all know, most commonly used methods of image denoising is Bayesian wavelet transform estimators. The Performance of various estimators, such as maximum a posteriori (MAP), or minimum mean square error (MMSE) is strongly dependent on correctness of the proposed model for original data distribution. Therefore, the selection of a proper model for distribution of wavelet coefficients is important in wavelet-based image denoising. This paper presents a new image denoising algorithm based on the modeling of wavelet coefficients in each subband with multivariate Radial Exponential probability density function (PDF) with local variances. Generally these multivariate extensions do not result in a closed form expression, and the solution requires numerical solutions. However, we drive a closed form MMSE shrinkage functions for a Radial Exponential random vectors in additive white Gaussian noise (AWGN). The estimator is motivated and tested on the problem of wavelet-based image denoising. In the last, proposed, the same idea is applied to the dual-tree complex wavelet transform (DT-CWT), This Transform is an over-complete wavelet transform.展开更多
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ...Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively.展开更多
This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with ...This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with the algorithm that breaks the images into various decomposition levels using Discrete Wavelet Transform (DWT) and searches for the noisy pixels using the outlyingness of the pixel. This algorithm has the capability of differentiating high frequency pixels and the “noisy pixel” using the threshold as well as window adjustments. The damage and the loss of information are prevented by means of interior mining. This global threshold based algorithm uses different thresholds for different quadrants of DWT and thus helps in recovery of noisy image even if it is 90% affected. Experimental results exhibit that this method outperforms other existing methods for accurate noise detection and removal, at the same time chain of connectivity is not lost.展开更多
Spatial analysis is the core of geographic information system(GIS),of which,spatial overlay of vector data is a major job.Computational intensity of the spatial overlay has a direct effect on the overall performance o...Spatial analysis is the core of geographic information system(GIS),of which,spatial overlay of vector data is a major job.Computational intensity of the spatial overlay has a direct effect on the overall performance of the GIS.High precision modeling for the computational intensity and analysis of the vector data overlay has been a challenging task.Thus,the paper proposes a novel approach,which utilizes self-learning and self-training features of optimized random forest algorithm to the vector data overlay analysis.Simulation experiments show that the proposed model is superior to non-optimized random forest algorithm and support vector machine model with higher prediction precision and is also capable of eliminate redundant computational intensity features.展开更多
Alzheimer’s disease is a non-reversible,non-curable,and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention.It is a ...Alzheimer’s disease is a non-reversible,non-curable,and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention.It is a frequently occurring mental illness that occurs in about 60%–80%of cases of dementia.It is usually observed between people in the age group of 60 years and above.Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal(CN),Mild Cognitive Impairment(MCI)and Alzheimer’s Disease(AD).Alzheimer’s disease is the last phase of the disease where the brain is severely damaged,and the patients are not able to live on their own.Radiomics is an approach to extracting a huge number of features from medical images with the help of data characterization algorithms.Here,105 number of radiomic features are extracted and used to predict the alzhimer’s.This paper uses Support Vector Machine,K-Nearest Neighbour,Gaussian Naïve Bayes,eXtreme Gradient Boosting(XGBoost)and Random Forest to predict Alzheimer’s disease.The proposed random forest-based approach with the Radiomic features achieved an accuracy of 85%.This proposed approach also achieved 88%accuracy,88%recall,88%precision and 87%F1-score for AD vs.CN,it achieved 72%accuracy,73%recall,72%precisionand 71%F1-score for AD vs.MCI and it achieved 69%accuracy,69%recall,68%precision and 69%F1-score for MCI vs.CN.The comparative analysis shows that the proposed approach performs better than others approaches.展开更多
基金support of the National Key R&D Program of China(No.2022YFC2803903)the Key R&D Program of Zhejiang Province(No.2021C03013)the Zhejiang Provincial Natural Science Foundation of China(No.LZ20F020003).
文摘The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods.
文摘In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm.
文摘现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等算法获得结构的模态参数是一种有效的方法。但在数据量有限时,随机减量函数的平均次数过少,导致RD函数的收敛性较差。为此提出了利用Vector Random Decrement技术(VRDT)提取自由衰减响应信号,而后利用特征系统实现算法ERA求得模态参数的方法,新算法能够有效地提高模态参数识别精度。数值算例验证了所提算法的有效性。
文摘In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement.
文摘To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to the statistical distribution of machining dimensions, material properties and service loads, and the system reliability optimization design with constraints and reliability optimization design of various mechanical parts is studied in this way. However, the above researches focus on solving the strength and the life problem, and no studies have been done on the discrete degree and discrete pattern of other performance indicators. The concept of using a random vector to describe the mechanical parts performance indicators is presented; characteristics between the value of the vector variance matrix determinant and the sum of the diagonal covariance matrix in describing the performance indicators of vector dispersion are studied and compared. A clutch diaphragm spring is set as an example, the geometric dimension indicator is described with random vector, and the applicability of using variance matrix determinant and variance matrix trace of geometric dimension vector to describe discrete degree of random vector is studied by using Monte-Carlo simulation method and component discrete degree perturbation method. Also, the effects of different components of diaphragm spring geometric dimension vector on the value of covariance matrix determinant and the sum of covariance matrix diagonal of diaphragm spring performance indicators vector are analyzed. The present study shows that the impacts of the dispersion of diaphragm spring cone angle on every performance dispersion are all ranked first, and far exceed that of other dimension dispersion. So it must be strictly controlled in the production process. The result of the research work provides a reference for the design of diaphragm spring, and also it presents a proper method for researching the performance of other mechanical parts.
文摘Image signals are always disturbed by noise during their transmission, such as in mobile or network communication. The received image quality is significantly influenced by noise. Thus, image signal denoising is an indispensable step during image processing. As we all know, most commonly used methods of image denoising is Bayesian wavelet transform estimators. The Performance of various estimators, such as maximum a posteriori (MAP), or minimum mean square error (MMSE) is strongly dependent on correctness of the proposed model for original data distribution. Therefore, the selection of a proper model for distribution of wavelet coefficients is important in wavelet-based image denoising. This paper presents a new image denoising algorithm based on the modeling of wavelet coefficients in each subband with multivariate Radial Exponential probability density function (PDF) with local variances. Generally these multivariate extensions do not result in a closed form expression, and the solution requires numerical solutions. However, we drive a closed form MMSE shrinkage functions for a Radial Exponential random vectors in additive white Gaussian noise (AWGN). The estimator is motivated and tested on the problem of wavelet-based image denoising. In the last, proposed, the same idea is applied to the dual-tree complex wavelet transform (DT-CWT), This Transform is an over-complete wavelet transform.
文摘Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively.
文摘This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with the algorithm that breaks the images into various decomposition levels using Discrete Wavelet Transform (DWT) and searches for the noisy pixels using the outlyingness of the pixel. This algorithm has the capability of differentiating high frequency pixels and the “noisy pixel” using the threshold as well as window adjustments. The damage and the loss of information are prevented by means of interior mining. This global threshold based algorithm uses different thresholds for different quadrants of DWT and thus helps in recovery of noisy image even if it is 90% affected. Experimental results exhibit that this method outperforms other existing methods for accurate noise detection and removal, at the same time chain of connectivity is not lost.
文摘Spatial analysis is the core of geographic information system(GIS),of which,spatial overlay of vector data is a major job.Computational intensity of the spatial overlay has a direct effect on the overall performance of the GIS.High precision modeling for the computational intensity and analysis of the vector data overlay has been a challenging task.Thus,the paper proposes a novel approach,which utilizes self-learning and self-training features of optimized random forest algorithm to the vector data overlay analysis.Simulation experiments show that the proposed model is superior to non-optimized random forest algorithm and support vector machine model with higher prediction precision and is also capable of eliminate redundant computational intensity features.
文摘Alzheimer’s disease is a non-reversible,non-curable,and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention.It is a frequently occurring mental illness that occurs in about 60%–80%of cases of dementia.It is usually observed between people in the age group of 60 years and above.Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal(CN),Mild Cognitive Impairment(MCI)and Alzheimer’s Disease(AD).Alzheimer’s disease is the last phase of the disease where the brain is severely damaged,and the patients are not able to live on their own.Radiomics is an approach to extracting a huge number of features from medical images with the help of data characterization algorithms.Here,105 number of radiomic features are extracted and used to predict the alzhimer’s.This paper uses Support Vector Machine,K-Nearest Neighbour,Gaussian Naïve Bayes,eXtreme Gradient Boosting(XGBoost)and Random Forest to predict Alzheimer’s disease.The proposed random forest-based approach with the Radiomic features achieved an accuracy of 85%.This proposed approach also achieved 88%accuracy,88%recall,88%precision and 87%F1-score for AD vs.CN,it achieved 72%accuracy,73%recall,72%precisionand 71%F1-score for AD vs.MCI and it achieved 69%accuracy,69%recall,68%precision and 69%F1-score for MCI vs.CN.The comparative analysis shows that the proposed approach performs better than others approaches.