Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H con...Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H contains exactly one Hall σi-subgroup of G for every σi ∈σ(G). A subgroup H of G is said to be:σ-permutable or σ-quasinormal in G if G possesses a complete Hall σ-set H such that HAx= AxH for all A ∈ H and x ∈ G:σ-subnormal in G if there is a subgroup chain A = A0≤A1≤···≤ At = G such that either Ai-1■Ai or Ai/(Ai-1)Ai is a finite σi-group for some σi ∈σ for all i = 1,..., t.If Mn < Mn-1 <···< M1 < M0 = G, where Mi is a maximal subgroup of Mi-1, i = 1, 2,..., n, then Mn is said to be an n-maximal subgroup of G. If each n-maximal subgroup of G is σ-subnormal(σ-quasinormal,respectively) in G but, in the case n > 1, some(n-1)-maximal subgroup is not σ-subnormal(not σ-quasinormal,respectively) in G, we write mσ(G)= n(mσq(G)= n, respectively).In this paper, we show that the parameters mσ(G) and mσq(G) make possible to bound the σ-nilpotent length lσ(G)(see below the definitions of the terms employed), the rank r(G) and the number |π(G)| of all distinct primes dividing the order |G| of a finite soluble group G. We also give the conditions under which a finite group is σ-soluble or σ-nilpotent, and describe the structure of a finite soluble group G in the case when mσ(G)=|π(G)|. Some known results are generalized.展开更多
Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this pape...Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this paper,we first summarize the knowledge about the algebraic structure of fuzzy multi-sets such as(α,γ)-anti-multi-fuzzy subgroups.In a way,the notion of anti-fuzzy multigroup is an application of anti-fuzzy multi sets to the theory of group.The concept of anti-fuzzy multigroup is a complement of an algebraic structure of a fuzzy multi set that generalizes both the theories of classical group and fuzzy group.The aim of this paper is to highlight the connection between fuzzy multi-sets and algebraic structures from an anti-fuzzification point of view.Therefore,in this paper,we define(α,γ)-antimulti-fuzzy subgroups,(α,γ)-anti-multi-fuzzy normal subgroups,(α,γ)-antimulti-fuzzy homomorphism on(α,γ)-anti-multi-fuzzy subgroups and these been explicated some algebraic structures.Then,we introduce the concept(α,γ)-anti-multi-fuzzy subgroups and(α,γ)-anti-multi-fuzzy normal subgroups and of their properties.This new concept of homomorphism as a bridge among set theory,fuzzy set theory,anti-fuzzy multi sets theory and group theory and also shows the effect of anti-fuzzy multi sets on a group structure.Certain results that discuss the(α,γ)cuts of anti-fuzzy multigroup are explored.展开更多
目的:描述慢性阻塞性肺疾病急性加重(acute exacerbation of chronic obstructive pulmonary disease, AECOPD)病人多症状现状,对其多症状进行特征分类,为提供针对性的干预提供参考。方法:采用便利抽样法选取2018年5月—2020年1月某三...目的:描述慢性阻塞性肺疾病急性加重(acute exacerbation of chronic obstructive pulmonary disease, AECOPD)病人多症状现状,对其多症状进行特征分类,为提供针对性的干预提供参考。方法:采用便利抽样法选取2018年5月—2020年1月某三级甲等医院住院的202例AECOPD病人为研究对象,采用一般资料调查表、改良的呼吸困难指数分级(Modified Medical Research Council, mMRC)、修订版记忆症状评估量表、COPD自我效能量表对其进行问卷调查,采用主成分因子分析和聚类分析法对病人多症状特征及群体异质性进行特征分类。结果:分为多症状低度组(n=103)、多症状中度组(n=60)、多症状高度组(n=39)3个亚组,其中高度组病人mMRC得分明显高于其他两组(均P<0.01),呼吸困难管理、体力活动、情感波动维度得分及自我效能总分低于低度组(均P<0.05)。结论:AECOPD病人的多症状存在群体异质性,导致病人不同程度的困扰,多症状3个亚组的识别可为个体化症状管理提供参考。展开更多
基金supported by National Nature Science Foundation of China (Grant No. 11771409)Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences
文摘Let σ={σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hall σ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H contains exactly one Hall σi-subgroup of G for every σi ∈σ(G). A subgroup H of G is said to be:σ-permutable or σ-quasinormal in G if G possesses a complete Hall σ-set H such that HAx= AxH for all A ∈ H and x ∈ G:σ-subnormal in G if there is a subgroup chain A = A0≤A1≤···≤ At = G such that either Ai-1■Ai or Ai/(Ai-1)Ai is a finite σi-group for some σi ∈σ for all i = 1,..., t.If Mn < Mn-1 <···< M1 < M0 = G, where Mi is a maximal subgroup of Mi-1, i = 1, 2,..., n, then Mn is said to be an n-maximal subgroup of G. If each n-maximal subgroup of G is σ-subnormal(σ-quasinormal,respectively) in G but, in the case n > 1, some(n-1)-maximal subgroup is not σ-subnormal(not σ-quasinormal,respectively) in G, we write mσ(G)= n(mσq(G)= n, respectively).In this paper, we show that the parameters mσ(G) and mσq(G) make possible to bound the σ-nilpotent length lσ(G)(see below the definitions of the terms employed), the rank r(G) and the number |π(G)| of all distinct primes dividing the order |G| of a finite soluble group G. We also give the conditions under which a finite group is σ-soluble or σ-nilpotent, and describe the structure of a finite soluble group G in the case when mσ(G)=|π(G)|. Some known results are generalized.
基金Yibin University Pre-research Project,Research on the coupling and coordinated development ofmanufacturing and logistics industry under the background of intelligentmanufacturing,(2022YY001)Sichuan ProvincialDepartment of EducationWater Transport EconomicResearch Center,Research on the Development Path and Countermeasures of the Advanced Manufacturing Industry in the Sanjiang New District of Yibin under a“dual circulation”development pattern(SYJJ2020A06).
文摘Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this paper,we first summarize the knowledge about the algebraic structure of fuzzy multi-sets such as(α,γ)-anti-multi-fuzzy subgroups.In a way,the notion of anti-fuzzy multigroup is an application of anti-fuzzy multi sets to the theory of group.The concept of anti-fuzzy multigroup is a complement of an algebraic structure of a fuzzy multi set that generalizes both the theories of classical group and fuzzy group.The aim of this paper is to highlight the connection between fuzzy multi-sets and algebraic structures from an anti-fuzzification point of view.Therefore,in this paper,we define(α,γ)-antimulti-fuzzy subgroups,(α,γ)-anti-multi-fuzzy normal subgroups,(α,γ)-antimulti-fuzzy homomorphism on(α,γ)-anti-multi-fuzzy subgroups and these been explicated some algebraic structures.Then,we introduce the concept(α,γ)-anti-multi-fuzzy subgroups and(α,γ)-anti-multi-fuzzy normal subgroups and of their properties.This new concept of homomorphism as a bridge among set theory,fuzzy set theory,anti-fuzzy multi sets theory and group theory and also shows the effect of anti-fuzzy multi sets on a group structure.Certain results that discuss the(α,γ)cuts of anti-fuzzy multigroup are explored.
文摘目的:描述慢性阻塞性肺疾病急性加重(acute exacerbation of chronic obstructive pulmonary disease, AECOPD)病人多症状现状,对其多症状进行特征分类,为提供针对性的干预提供参考。方法:采用便利抽样法选取2018年5月—2020年1月某三级甲等医院住院的202例AECOPD病人为研究对象,采用一般资料调查表、改良的呼吸困难指数分级(Modified Medical Research Council, mMRC)、修订版记忆症状评估量表、COPD自我效能量表对其进行问卷调查,采用主成分因子分析和聚类分析法对病人多症状特征及群体异质性进行特征分类。结果:分为多症状低度组(n=103)、多症状中度组(n=60)、多症状高度组(n=39)3个亚组,其中高度组病人mMRC得分明显高于其他两组(均P<0.01),呼吸困难管理、体力活动、情感波动维度得分及自我效能总分低于低度组(均P<0.05)。结论:AECOPD病人的多症状存在群体异质性,导致病人不同程度的困扰,多症状3个亚组的识别可为个体化症状管理提供参考。