Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a ne...Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a new strategy to address this issue.It is found that the cyclic stability of Ni-rich/Li battery can be significantly improved by using succinic anhydride(SA) as an electrolyte additive.Specifically,the capacity retention of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/Li cell is improved from 14% to 83% after 200cycles at 1 C between 3.0 and 4.35 V by applying 5% SA.The underlying mechanism of SA contribution is understood by comparing the effects of malic anhydride(MA) and citraconic anhydride(CA), both of which share a similar molecular structure to SA but show different effects.On anode side,SA can but MA and CA cannot form a protective solid electrolyte interphase(SEI) on Li anode.On cathode side,three anhydrides can suppress the formation of hydrogen fluoride from electrolyte oxidation decomposition,but SA behaves best.Typically,MA shows adverse effects on the interface stability of Li anode and NCM811 cathode,which originates from its high acidity.Though the acidity of MA can be mitigated by substituting a methyl for one H atom at its C=C bond,the substituent CA cannot compete with SA in cyclic stability improvement of the cell,because the SEI resulting from CA is not as robust as that from SA,which is related to the binding energy of the SEI components.This understanding reveals the importance of the electrolyte acidity on the Ni-rich cathode and the robustness of the SEI on Li anode,which is helpful for rationally designing new electrolyte additives to further improve the cyclic stability of high-energydensity Ni-rich/Li batteries.展开更多
Ni/Al2O3 catalysts were derived from spinel NiAl2O4 with different Ni content ((2.5, 5 and 7.5) wt%). The catalysts were obtained by H-2 reduction and were investigated for the low-temperature hydrogenation of maleic ...Ni/Al2O3 catalysts were derived from spinel NiAl2O4 with different Ni content ((2.5, 5 and 7.5) wt%). The catalysts were obtained by H-2 reduction and were investigated for the low-temperature hydrogenation of maleic anhydride (MA) to produce succinic anhydride (SA). The characterization results showed that Ni-0 active sites were mainly derived during the H2 reduction from spinel NiAl2O4 Among the catalysts studied, employing the optimum preparation and reaction conditions with Ni(5%)/Al2O3 yielded the highest catalytic performance. A near-100% conversion of MA and similar to 90% selectivity to SA were achieved at 120 degrees C and 0.5 MPa of H-2 with a weighted hourly space velocity (MA) of 2 h(-1). (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ ...Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.展开更多
In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature prog...In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The XRD and TPR studies showed that Ni was present as Ni2+ on the support, which indicated that there were no elemental nickel (Ni^0) and Ni203 species in the unreduced samples. Increasing of calcination temperature to 650 ℃ leads to destruction of the support structure observed in TGA, while the catalyst sample calcined at 550 ℃ exhibits better performances than other samples. The ideal conversion of maleic anhydride (97.14%) and selectivity of succinic anhydride (99.55%) were realized at a reaction temperature of 180 ℃ and a weight hourly space velocity of 4 h^-1 under a reaction pressure of 1 MPa.展开更多
The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrare...The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrared spectroscopy(FTIR),the X-ray diffraction(XRD),the scanning electron microscopy(SEM),the transmission electron microscopy(TEM),and the N_(2)adsorption technique.The selective hydrogenation of maleic anhydride(MA)to succinic anhydride(SA)over the Ni/CMS catalysts was investigated.The results indicated that the Ni/CMS catalyst,which was prepared with glucose as carbon source and calcined at 500℃,exhibited the best performance.The hydrogen pressure,reaction temperature,and reaction time could significantly affect the conversion of maleic anhydride during the hydrogenation reaction.A 98.4%conversion of MA and an 100%selectivity to SA were achieved over the Ni/CMS catalyst in acetic anhydride solvent under mild conditions covering a temperature of 90℃,a H2 pressure of 1.0 MPa,and a reaction time of 3 h.展开更多
Alkenyl succinic anhydride(ASA) is a popular paper-sizing agent that is generally added to papermaking systems as an aqueous emulsion. Herein, we reviewed the recent work focusing on ASA emulsions stabilized by solid ...Alkenyl succinic anhydride(ASA) is a popular paper-sizing agent that is generally added to papermaking systems as an aqueous emulsion. Herein, we reviewed the recent work focusing on ASA emulsions stabilized by solid particles. Solid particle-stabilized ASA emulsions generally possess high ASA content and exhibit good sizing performance. The particles that have been used to stabilize ASA emulsions typically include montmorillonite, laponite, alumina, TiO_2, Fe_3O_4, polyaluminum sulfate(PAS), and cellulose nanocrystals(CNCs). Montmorillonite is the first extensively studied particle stabilizer for ASA emulsions. Laponite is undoubtedly the most competent particle stabilizer for preparing ASA emulsions with high sizing efficiency. Montmorillonite and laponite can be used individually as stabilizers after modification or as co-stabilizers with other particles or polymers. TiO_2, alumina, PAS, and CNCs are commonly used as stabilizers either individually or with other particles.展开更多
The aim of this work was to use cellulose nanocrystals that were obtained by hydrolysis in phosphoric acid solution and further modified with succinic anhydride in the microwave field for PLA reinforcement.A series of...The aim of this work was to use cellulose nanocrystals that were obtained by hydrolysis in phosphoric acid solution and further modified with succinic anhydride in the microwave field for PLA reinforcement.A series of allbionanocomposites containing unmodified and surface modified cellulose nanocrystals with CNC content in the range of 1–3%_(w.t.) were obtained by melt blending and tested by XRD,SEM,DSC and DMA to investigate the effect of surface esterification of CNCs on the structure,morphology,dynamic mechanical properties of bionanocomposites,as well as phase transitions of PLA in the presence of cellulosic nanofiller.DMA investigations showed the highest increase of storage modulus by ca.7%(335 MPa at 25℃)in the glassy state of PLA for 2%_(w.t.)of unmodified CNC.Though,addition of 2%_(w.t.)of succinylated CNCs caused the highest increase of the onset of glass transition temperature(by 6.2℃)thus widening the temperature range of biocomposite application.The increase of glass transition temperature indicates the strongest interfacial interactions due to improved miscibility of surface modified nanocrystals and thus good dispersion of additive in PLA matrix providing high interface.展开更多
The pseudo-boehmite derived alumina supported metal(Cu,Co and Ni) catalysts prepared by the impregnation method were investigated in hydrogenation of maleic anhydride(MA) to succinic anhydride(SA) and γ-butyrol...The pseudo-boehmite derived alumina supported metal(Cu,Co and Ni) catalysts prepared by the impregnation method were investigated in hydrogenation of maleic anhydride(MA) to succinic anhydride(SA) and γ-butyrolactone.The catalysts were characterized by ICP-AES,N2 adsorptiondesorption,XRD,H2-TPR,CO-TPD,dissociative N2O adsorption and TEM and the results showed that the alumina possessed mesoporous feature and the metal species were well dispersed on the support.Compared to Cu/Al2O3 and Co/Al2O3,Ni/Al2O3 exhibited higher catalytic activity in the MA hydrogenation with 92%selectivity to SA and nearly 100%conversion of MA at 140 °C under 0.5 MPa of H2 with a weighted hourly space velocity of 2 h 1(MA).The stability of Ni/Al2O3 catalyst was also investigated.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21872058)。
文摘Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a new strategy to address this issue.It is found that the cyclic stability of Ni-rich/Li battery can be significantly improved by using succinic anhydride(SA) as an electrolyte additive.Specifically,the capacity retention of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/Li cell is improved from 14% to 83% after 200cycles at 1 C between 3.0 and 4.35 V by applying 5% SA.The underlying mechanism of SA contribution is understood by comparing the effects of malic anhydride(MA) and citraconic anhydride(CA), both of which share a similar molecular structure to SA but show different effects.On anode side,SA can but MA and CA cannot form a protective solid electrolyte interphase(SEI) on Li anode.On cathode side,three anhydrides can suppress the formation of hydrogen fluoride from electrolyte oxidation decomposition,but SA behaves best.Typically,MA shows adverse effects on the interface stability of Li anode and NCM811 cathode,which originates from its high acidity.Though the acidity of MA can be mitigated by substituting a methyl for one H atom at its C=C bond,the substituent CA cannot compete with SA in cyclic stability improvement of the cell,because the SEI resulting from CA is not as robust as that from SA,which is related to the binding energy of the SEI components.This understanding reveals the importance of the electrolyte acidity on the Ni-rich cathode and the robustness of the SEI on Li anode,which is helpful for rationally designing new electrolyte additives to further improve the cyclic stability of high-energydensity Ni-rich/Li batteries.
基金supported by the National Natural Science Foundation of China(21173050,21371035)SINOPEC(X514005)~~
文摘Ni/Al2O3 catalysts were derived from spinel NiAl2O4 with different Ni content ((2.5, 5 and 7.5) wt%). The catalysts were obtained by H-2 reduction and were investigated for the low-temperature hydrogenation of maleic anhydride (MA) to produce succinic anhydride (SA). The characterization results showed that Ni-0 active sites were mainly derived during the H2 reduction from spinel NiAl2O4 Among the catalysts studied, employing the optimum preparation and reaction conditions with Ni(5%)/Al2O3 yielded the highest catalytic performance. A near-100% conversion of MA and similar to 90% selectivity to SA were achieved at 120 degrees C and 0.5 MPa of H-2 with a weighted hourly space velocity (MA) of 2 h(-1). (C) 2017, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
文摘Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition.
文摘In this work, the hydrogenation of maleic anhydride to succinic anhydride in the presence of 5 m%Ni/clay catalysts was investigated. These catalysts were characterized by X-ray diffraction (XRD), H2 temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The XRD and TPR studies showed that Ni was present as Ni2+ on the support, which indicated that there were no elemental nickel (Ni^0) and Ni203 species in the unreduced samples. Increasing of calcination temperature to 650 ℃ leads to destruction of the support structure observed in TGA, while the catalyst sample calcined at 550 ℃ exhibits better performances than other samples. The ideal conversion of maleic anhydride (97.14%) and selectivity of succinic anhydride (99.55%) were realized at a reaction temperature of 180 ℃ and a weight hourly space velocity of 4 h^-1 under a reaction pressure of 1 MPa.
基金The authors are grateful for the financial supports of the Project of Research and Development Fund of Nanchong City(19YFZJ0107,18YFZJ0041)the Meritocracy Research Funds of China West Normal University(17YC041)the Undergraduate Training Program for Innovation of China West Normal University.(cxcy2020186).
文摘The colloidal carbon microspheres(CMS)were prepared by the hydrothermal method.The nickel catalysts supported on carbon microspheres(Ni/CMS)were further prepared and were characterized by the Fourier transform infrared spectroscopy(FTIR),the X-ray diffraction(XRD),the scanning electron microscopy(SEM),the transmission electron microscopy(TEM),and the N_(2)adsorption technique.The selective hydrogenation of maleic anhydride(MA)to succinic anhydride(SA)over the Ni/CMS catalysts was investigated.The results indicated that the Ni/CMS catalyst,which was prepared with glucose as carbon source and calcined at 500℃,exhibited the best performance.The hydrogen pressure,reaction temperature,and reaction time could significantly affect the conversion of maleic anhydride during the hydrogenation reaction.A 98.4%conversion of MA and an 100%selectivity to SA were achieved over the Ni/CMS catalyst in acetic anhydride solvent under mild conditions covering a temperature of 90℃,a H2 pressure of 1.0 MPa,and a reaction time of 3 h.
基金funded by the National Natural Science Foundation of China(Grant Nos.31270625 and 21406122)
文摘Alkenyl succinic anhydride(ASA) is a popular paper-sizing agent that is generally added to papermaking systems as an aqueous emulsion. Herein, we reviewed the recent work focusing on ASA emulsions stabilized by solid particles. Solid particle-stabilized ASA emulsions generally possess high ASA content and exhibit good sizing performance. The particles that have been used to stabilize ASA emulsions typically include montmorillonite, laponite, alumina, TiO_2, Fe_3O_4, polyaluminum sulfate(PAS), and cellulose nanocrystals(CNCs). Montmorillonite is the first extensively studied particle stabilizer for ASA emulsions. Laponite is undoubtedly the most competent particle stabilizer for preparing ASA emulsions with high sizing efficiency. Montmorillonite and laponite can be used individually as stabilizers after modification or as co-stabilizers with other particles or polymers. TiO_2, alumina, PAS, and CNCs are commonly used as stabilizers either individually or with other particles.
文摘The aim of this work was to use cellulose nanocrystals that were obtained by hydrolysis in phosphoric acid solution and further modified with succinic anhydride in the microwave field for PLA reinforcement.A series of allbionanocomposites containing unmodified and surface modified cellulose nanocrystals with CNC content in the range of 1–3%_(w.t.) were obtained by melt blending and tested by XRD,SEM,DSC and DMA to investigate the effect of surface esterification of CNCs on the structure,morphology,dynamic mechanical properties of bionanocomposites,as well as phase transitions of PLA in the presence of cellulosic nanofiller.DMA investigations showed the highest increase of storage modulus by ca.7%(335 MPa at 25℃)in the glassy state of PLA for 2%_(w.t.)of unmodified CNC.Though,addition of 2%_(w.t.)of succinylated CNCs caused the highest increase of the onset of glass transition temperature(by 6.2℃)thus widening the temperature range of biocomposite application.The increase of glass transition temperature indicates the strongest interfacial interactions due to improved miscibility of surface modified nanocrystals and thus good dispersion of additive in PLA matrix providing high interface.
基金supported by the National Natural Science Foundation of China (Nos. 21173050 and 21371035)China Petrochemical Corporation (No. X514005)
文摘The pseudo-boehmite derived alumina supported metal(Cu,Co and Ni) catalysts prepared by the impregnation method were investigated in hydrogenation of maleic anhydride(MA) to succinic anhydride(SA) and γ-butyrolactone.The catalysts were characterized by ICP-AES,N2 adsorptiondesorption,XRD,H2-TPR,CO-TPD,dissociative N2O adsorption and TEM and the results showed that the alumina possessed mesoporous feature and the metal species were well dispersed on the support.Compared to Cu/Al2O3 and Co/Al2O3,Ni/Al2O3 exhibited higher catalytic activity in the MA hydrogenation with 92%selectivity to SA and nearly 100%conversion of MA at 140 °C under 0.5 MPa of H2 with a weighted hourly space velocity of 2 h 1(MA).The stability of Ni/Al2O3 catalyst was also investigated.