期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
The Powers Sums, Bernoulli Numbers, Bernoulli Polynomials Rethinked 被引量:1
1
作者 Do Tan Si 《Applied Mathematics》 2019年第3期100-112,共13页
Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) appli... Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums. 展开更多
关键词 bernoulli numbers bernoulli POLYNOMIALS POWERS SUMS Faulhaber CONJECTURE Shift OPERATOR OPERATOR Calculus
下载PDF
Multiparameter Higher Order Daehee and Bernoulli Numbers and Polynomials 被引量:1
2
作者 Beih S. El-Desouky Abdelfattah Mustafa Fatma M. Abdel-Moneim 《Applied Mathematics》 2017年第6期775-785,共11页
This paper gives a new generalization of higher order Daehee and Bernoulli numbers and polynomials. We define the multiparameter higher order Daehee numbers and polynomials of the first and second kind. Moreover, we d... This paper gives a new generalization of higher order Daehee and Bernoulli numbers and polynomials. We define the multiparameter higher order Daehee numbers and polynomials of the first and second kind. Moreover, we derive some new results for these numbers and polynomials. The relations between these numbers and Stirling and Bernoulli numbers are obtained. Furthermore, some interesting special cases of the generalized higher order Daehee and Bernoulli numbers and polynomials are deduced. 展开更多
关键词 Daehee numbers Daehee POLYNOMIALS HIGHER-ORDER Daehee numbers HIGHER-ORDER Daehee POLYNOMIALS HIGHER-ORDER bernoulli POLYNOMIALS Multiparities Daehee POLYNOMIALS
下载PDF
Selection of Coherent and Concise Formulae on Bernoulli Polynomials-Numbers-Series and Power Sums-Faulhaber Problems
3
作者 Do Tan Si 《Applied Mathematics》 2022年第10期799-821,共23页
Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi... Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums. 展开更多
关键词 bernoulli numbers bernoulli Polynomials Powers Sums Zeta Function Faulhaber Conjecture
下载PDF
Expressions of Two Classes of Infinite Series in Terms of Bernoulli Numbers
4
作者 GUO Dong-wei CHEN Yu-lei 《Chinese Quarterly Journal of Mathematics》 2022年第1期79-87,共9页
In this paper,the expressions of two classes of infinite series in terms of finite series involving Bernoulli numbers are obtained.As applications,we derive some special series including Dirichlet beta functionβ(s)wi... In this paper,the expressions of two classes of infinite series in terms of finite series involving Bernoulli numbers are obtained.As applications,we derive some special series including Dirichlet beta functionβ(s)with argument 2n+1 and Dirichlet lambda functionλ(s)with argument 2n.In addition,we solve the problem proposed recently by Zhou(2021). 展开更多
关键词 bernoulli numbers bernoulli polynomials Polygamma function Generalized Zeta function
下载PDF
Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers
5
作者 老大中 赵珊珊 老天夫 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期298-304,共7页
Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying... Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented. 展开更多
关键词 bernoulli numbers Euler numbers coefficients of beam simple beam equation of deflection curve Fourier series
下载PDF
Generalized Harmonic Numbers Hn,k,r (α,β) with Combinatorial Sequences 被引量:1
6
作者 Rui Wang   Wuyungaowa 《Journal of Applied Mathematics and Physics》 2022年第5期1602-1618,共17页
In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r&... In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r</sub> (α,β) with Changhee sequences, Daehee sequences, Degenerate Changhee-Genoocchi sequences, Two kinds of degenerate Stirling numbers. Using Riordan arrays, we explore interesting relations between these polynomials, Apostol Bernoulli sequences, Apostol Euler sequences, Apostol Genoocchi sequences. 展开更多
关键词 Generating Function Riordan Arrays Generalized Harmonic numbers Changhee Sequences Daehee Sequences Apostol bernoulli Sequences Degenerate Changhee-Genoocchi Sequences
下载PDF
Special Numbers on Analytic Functions
7
作者 Yilmaz Simsek 《Applied Mathematics》 2014年第7期1091-1098,共8页
The aim of this paper is to give some analytic functions which are related to the generating functions for the central factorial numbers. By using these functions and p-adic Volkenborn integral, we derive many new ide... The aim of this paper is to give some analytic functions which are related to the generating functions for the central factorial numbers. By using these functions and p-adic Volkenborn integral, we derive many new identities associated with the Bernoulli and Euler numbers, the central factorial numbers and the Stirling numbers. We also give some remarks and comments on these analytic functions, which are related to the generating functions for the special numbers. 展开更多
关键词 bernoulli numbers Euler numbers The Central FACTORIAL numbers Array Polynomials STIRLING numbers of the First KIND and the Second KIND Generating Function Functional Equation Analytic Functions
下载PDF
New Extension of Unified Family Apostol-Type of Polynomials and Numbers
8
作者 Beih El-Sayed El-Desouky Rabab Sabry Gomaa 《Applied Mathematics》 2015年第9期1495-1505,共11页
The purpose of this paper is to introduce and investigate new unification of unified family of Apostol-type polynomials and numbers based on results given in [1] [2]. Also, we derive some properties for these polynomi... The purpose of this paper is to introduce and investigate new unification of unified family of Apostol-type polynomials and numbers based on results given in [1] [2]. Also, we derive some properties for these polynomials and obtain some relationships between the Jacobi polynomials, Laguerre polynomials, Hermite polynomials, Stirling numbers and some other types of generalized polynomials. 展开更多
关键词 Euler bernoulli and Genocchi POLYNOMIALS STIRLING numbers LAGUERRE POLYNOMIALS Hermite POLYNOMIALS
下载PDF
Bernoulli数和Euler数的关系 被引量:13
9
作者 雒秋明 郭田芬 祁锋 《河南师范大学学报(自然科学版)》 CAS CSCD 2003年第2期9-11,共3页
本文给出了Bernoulli数和Euler数之间的关系 ,从而深化和补充了文献 [1~
关键词 bernoulli EULER数 解析数论 关系 代数结构 实数集
下载PDF
高阶Bernoulli多项式和高阶Euler多项式的关系 被引量:8
10
作者 雒秋明 马韵新 祁锋 《数学杂志》 CSCD 北大核心 2005年第6期631-636,共6页
利用发生函数的方法,讨论了高阶Bernoulli数和高阶Euler数,高阶Bernoulli多项式和高阶Euler多项式之间的关系,得到了经典Bernoulli数和Euler数,经典Bernoulli多项式和Euler多项式之间的新型关系.
关键词 bernoulli-Euler数 bernoulli-Euler多项式 高阶bernoulli-Euler数 高阶BernoullliEuler多项式 关系
下载PDF
高阶Bernoulli数和高阶Euler数的关系 被引量:5
11
作者 雒秋明 安春香 《河南师范大学学报(自然科学版)》 CAS CSCD 2004年第2期28-30,37,共4页
使用发生函数方法全面讨论了高阶Bernoulli数和高阶Euler数之间的新型关系,这些公式进一步深化和补充了文献[3~5]中的相关结果.
关键词 Bemoulli数 EULER数 高阶bernoulli 高阶EULER数 关系
下载PDF
联系Euler数和Bernoulli数的一些恒等式 被引量:4
12
作者 辛小龙 张建康 《纯粹数学与应用数学》 CSCD 1993年第1期23-28,共6页
本文的主要目的是建立一些包含Euler数和Bernoulli数的函数方程,进而给出联系Euler数和Bernoulli数的几个恒等式和同余式。
关键词 恒等式 欧拉数 伯努利数 函数言程 同余式
下载PDF
Bernoulli数与判别素数的充要条件 被引量:5
13
作者 王云葵 马武瑜 《华侨大学学报(自然科学版)》 CAS 2000年第3期234-238,共5页
利用等幂和与判别素数的充要条件及等幂和与 Bernoulli数的同余关系 ,获得与 Bernoulli数有关的判别素数的充要条件 ,还得到整除 Bernoulli数的充要条件 .
关键词 bernoulli 充要条件 素数 判别 等幂和
下载PDF
高阶Bernoulli数和高阶Bernoulli多项式 被引量:3
14
作者 雒秋明 郭田芬 马韵新 《河南科学》 2004年第3期285-289,共5页
得到了高阶Bernoulli数和高阶Bernoulli多项式的若干新结果
关键词 bernoulli 高阶bernoulli bernoulli多项式 高阶bernoulli多项式 递推公式
下载PDF
有关Euler、Bernoulli和Genocehi序列几个恒等式 被引量:11
15
作者 朱伟义 《浙江师范大学学报(自然科学版)》 CAS 2004年第3期230-233,共4页
根据Euler数、Bernoulli数、Genochi数的定义,利用函数方程和母函数方法研究了Euler数、Bernoulli数、Genochi数的幂级数展开和它们之间的内在联系,得到了包含Euler数、Bernoulli数、Genocchi数的几个简洁的恒等式;并给出了Euler数、Ber... 根据Euler数、Bernoulli数、Genochi数的定义,利用函数方程和母函数方法研究了Euler数、Bernoulli数、Genochi数的幂级数展开和它们之间的内在联系,得到了包含Euler数、Bernoulli数、Genocchi数的几个简洁的恒等式;并给出了Euler数、Bernoulli数、Genochi数之间相互表示的关系式,同时结合实例进行了计算. 展开更多
关键词 bernoulli EULER数 恒等式 母函数 幂级数 函数方程 表示 关系式 定义 方法研究
下载PDF
联系Bernoulli数和第二类Stirling数的一个恒等式 被引量:7
16
作者 褚维盘 党四善 《纯粹数学与应用数学》 CSCD 2004年第3期282-284,共3页
利用指数型生成函数建立起联系 Bernoulli数和第二类
关键词 指数型生成函数 bernoulli 第二类STIRLING数 恒等式
下载PDF
广义Bernoulli数和广义高阶Bernoulli数 被引量:20
17
作者 雒秋明 《纯粹数学与应用数学》 CSCD 2002年第4期305-308,共4页
定义了广义 Bernoulli数和广义高阶 Bernoulli数 ,建立了它们的递推公式和有关性质 ,从而推广了 Bernoulli数和高阶 Bernoulli数 .
关键词 bernoulli 高阶bernoulli 广义bernoulli 广义高阶bernoulli 递推公式
下载PDF
涉及Euler数、Bernoulli数和推广的第一类Stirling数的一些恒等式 被引量:5
18
作者 党四善 褚维盘 《纯粹数学与应用数学》 CSCD 1997年第2期109-113,117,共6页
利用递推关系把文[1]、[2]中的有关结论推广到一般情形,建立起涉及Eu-ler数、Bernouli数和推广的第一类Stirling数的一些恒等式.
关键词 STIRLING数 恒等式 递推关系 欧拉数 伯努利数
下载PDF
高阶Bernoulli多项式、高阶Euler多项式与Stirling数的关系 被引量:2
19
作者 杨胜良 马成业 《兰州理工大学学报》 CAS 北大核心 2009年第2期146-149,共4页
用生成函数与组合分析的方法研究高阶Bernoulli多项式、高阶Euler多项式与Stirling数的关系,给出用Stirling数计算高阶Bernoulli多项式和高阶Euler多项式的公式.
关键词 高阶bernoulli 高阶bernoulli多项式 高阶EULER多项式 第一类STIRLING数 第二类STIRLING数 成函数
下载PDF
有关高阶的Genocchi数、Euler数与Bernoulli数的一些恒等式 被引量:3
20
作者 李志荣 劳汉生 《安徽大学学报(自然科学版)》 CAS 北大核心 2008年第2期12-14,共3页
根据高阶Euler数、高阶Bernoulli数及高阶Genocchi数定义,利用发生函数方法建立起高阶Euler数、高阶Bernoulli数与高阶Genocchi数之间的恒等式,得到这些高阶数分别用其他普通数表示的几组计算公式,推广了已有的相关结果.
关键词 高阶Genocchi数 高阶EULER数 高阶bernoulli 恒等式 发生函数
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部