The Eulerian?Lagrangian method(ELM) has been used by many ocean models as the solution of the advection equation,but the numerical error caused by interpolation imposes restriction on its accuracy.In the present st...The Eulerian?Lagrangian method(ELM) has been used by many ocean models as the solution of the advection equation,but the numerical error caused by interpolation imposes restriction on its accuracy.In the present study,hybrid N-order Lagrangian interpolation ELM(Li ELM) is put forward in which the N-order Lagrangian interpolation is used at first,then the lower order Lagrangian interpolation is applied in the points where the interpolation results are abnormally higher or lower.The calculation results of a step-shaped salinity advection model are analyzed,which show that higher order(N=3?8) Li ELM can reduce the mean numerical error of salinity calculation,but the numerical oscillation error is still significant.Even number order Li ELM makes larger numerical oscillation error than its adjacent odd number order Li ELM.Hybrid N-order Li ELM can remove numerical oscillation,and it significantly reduces the mean numerical error when N is even and the current is in fixed direction,while it makes less effect on mean numerical error when N is odd or the current direction changes periodically.Hybrid odd number order Li ELM makes less mean numerical error than its adjacent even number order Li ELM when the current is in the fixed direction,while the mean numerical error decreases as N increases when the current direction changes periodically,so odd number of N may be better for application.Among various types of Hybrid N-order Li ELM,the scheme reducing N-order directly to 1st-order may be the optimal for synthetic selection of accuracy and computational efficiency.展开更多
An solution to tooth deformation of parabola tooth belt has been obtainedby complex function method of plane elastic theory,with the tooth deformation specifiedand the middle line between neighboring teeth displaced.T...An solution to tooth deformation of parabola tooth belt has been obtainedby complex function method of plane elastic theory,with the tooth deformation specifiedand the middle line between neighboring teeth displaced.The law governing the toothdeformation under load and the effect of deformation on distribution of load are analysed aswell.Computer software has been compiled on the basis of this way of solution and anaccurate way of calculation is provided for study on tooth deformation and loaddistribution.展开更多
By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations is shown. Some exact explicit parametric...By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations is shown. Some exact explicit parametric representations of kink wave solutions are given. Explicit parameter conditions to guarantee the existence of kink wave solutions are determined.展开更多
The limitations of several existing classical rock damage models were critically appraised. Thereafter, a description of a new model to estimate the response of rock was provided. The results of an investigation lead ...The limitations of several existing classical rock damage models were critically appraised. Thereafter, a description of a new model to estimate the response of rock was provided. The results of an investigation lead to the development and confirmation of a new index parabola damage model. The new model is divided into two parts, fictitious damage and real damage and bordered by the critical damage point. In fictitious damage, the damage variable follows the index distribution, while in the real damage a parabolic distribution is used. Thus, the so called index parabola damage model is derived. The proposed damage model is applied to simulate the damage procedure of marble under uni axial loading. The results of the tests show that the proposed model is in excellent agreement with experimental data, in particular the nonlinear characteristic of rock deformation is adequately represented. [展开更多
This paper concerns N-order fixed point theory in partially ordered metric spaces. For the sake of simplicity, we start our investigations with the tripled case. We define tripled generalized Meir-Keeler type contract...This paper concerns N-order fixed point theory in partially ordered metric spaces. For the sake of simplicity, we start our investigations with the tripled case. We define tripled generalized Meir-Keeler type contraction which extends the definition of [Bessem Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), 4508-4517]. We then discuss the existence and uniqueness of tripled fixed point theorems in partially ordered metric spaces. For general cases, we generalized our results to the N-order case. The results will promote the study of N-order fixed point theory.展开更多
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho...The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.40906044 and 41076048)the Fundamental Research Funds for the Central Universities Project(Grant No.2011B05714)
文摘The Eulerian?Lagrangian method(ELM) has been used by many ocean models as the solution of the advection equation,but the numerical error caused by interpolation imposes restriction on its accuracy.In the present study,hybrid N-order Lagrangian interpolation ELM(Li ELM) is put forward in which the N-order Lagrangian interpolation is used at first,then the lower order Lagrangian interpolation is applied in the points where the interpolation results are abnormally higher or lower.The calculation results of a step-shaped salinity advection model are analyzed,which show that higher order(N=3?8) Li ELM can reduce the mean numerical error of salinity calculation,but the numerical oscillation error is still significant.Even number order Li ELM makes larger numerical oscillation error than its adjacent odd number order Li ELM.Hybrid N-order Li ELM can remove numerical oscillation,and it significantly reduces the mean numerical error when N is even and the current is in fixed direction,while it makes less effect on mean numerical error when N is odd or the current direction changes periodically.Hybrid odd number order Li ELM makes less mean numerical error than its adjacent even number order Li ELM when the current is in the fixed direction,while the mean numerical error decreases as N increases when the current direction changes periodically,so odd number of N may be better for application.Among various types of Hybrid N-order Li ELM,the scheme reducing N-order directly to 1st-order may be the optimal for synthetic selection of accuracy and computational efficiency.
文摘An solution to tooth deformation of parabola tooth belt has been obtainedby complex function method of plane elastic theory,with the tooth deformation specifiedand the middle line between neighboring teeth displaced.The law governing the toothdeformation under load and the effect of deformation on distribution of load are analysed aswell.Computer software has been compiled on the basis of this way of solution and anaccurate way of calculation is provided for study on tooth deformation and loaddistribution.
基金Project supported by the National Natural Science Foundation of China(No.10671179)the Natural Science Foundation of Yunnan Province of China(No.2003A0018M)
文摘By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations is shown. Some exact explicit parametric representations of kink wave solutions are given. Explicit parameter conditions to guarantee the existence of kink wave solutions are determined.
文摘The limitations of several existing classical rock damage models were critically appraised. Thereafter, a description of a new model to estimate the response of rock was provided. The results of an investigation lead to the development and confirmation of a new index parabola damage model. The new model is divided into two parts, fictitious damage and real damage and bordered by the critical damage point. In fictitious damage, the damage variable follows the index distribution, while in the real damage a parabolic distribution is used. Thus, the so called index parabola damage model is derived. The proposed damage model is applied to simulate the damage procedure of marble under uni axial loading. The results of the tests show that the proposed model is in excellent agreement with experimental data, in particular the nonlinear characteristic of rock deformation is adequately represented. [
文摘This paper concerns N-order fixed point theory in partially ordered metric spaces. For the sake of simplicity, we start our investigations with the tripled case. We define tripled generalized Meir-Keeler type contraction which extends the definition of [Bessem Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), 4508-4517]. We then discuss the existence and uniqueness of tripled fixed point theorems in partially ordered metric spaces. For general cases, we generalized our results to the N-order case. The results will promote the study of N-order fixed point theory.
文摘The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.