The notion of n-transitivity can be carried over from groups of diffeomorphisms on a manifold M to groups of bisections of a Lie groupoid over M. The main theorem states that the n-transitivity is fulfilled for all n ...The notion of n-transitivity can be carried over from groups of diffeomorphisms on a manifold M to groups of bisections of a Lie groupoid over M. The main theorem states that the n-transitivity is fulfilled for all n ∈N by an arbitrary group of Cr-bisections of a Lie groupoid F of class Cr, where 1 ≤ r ≤ ω, under mild conditions. For instance, the group of all bisections of any Lie groupoid and the group of all Lagrangian bisections of any symplectic groupoid are n-transitive in the sense of this theorem. In particular, if F is source connected for any arrow γ∈ Г, there is a bisection passing through γ.展开更多
文摘The notion of n-transitivity can be carried over from groups of diffeomorphisms on a manifold M to groups of bisections of a Lie groupoid over M. The main theorem states that the n-transitivity is fulfilled for all n ∈N by an arbitrary group of Cr-bisections of a Lie groupoid F of class Cr, where 1 ≤ r ≤ ω, under mild conditions. For instance, the group of all bisections of any Lie groupoid and the group of all Lagrangian bisections of any symplectic groupoid are n-transitive in the sense of this theorem. In particular, if F is source connected for any arrow γ∈ Г, there is a bisection passing through γ.