This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadr...This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadratic equations and functions through a study carried out at Quezon National High School.The research involved 116 Grade 9 students and utilized a quantitative approach,incorporating both pre-assessment and post-assessment measures.The research utilizes a quasi-experimental design,examining the academic performance of students before and after the introduction of MILAPlus.The pre-assessment establishes a baseline,and the subsequent post-assessment measures the impact of the instructional strategy.Statistical analyses,including t-tests,assess the significance of differences in mean scores and mean percentage scores,providing quantitative insights into the effectiveness of MILAPlus.Findings from the study revealed a statistically significant improvement in both mean scores and mean percentage scores after the utilization of MILAPlus,indicating enhanced proficiency in quadratic equations and functions.The Mean Proficiency Scores(MPS)also showed a substantial increase,demonstrating a marked improvement in overall proficiency levels among Grade 9 students.In light of the results,recommendations were given including the continued utilization of MILAPlus as an instructional strategy and aligning its development with prescribed learning competencies.Emphasizing the consistent adherence to policies and guidelines for MILAPlus implementation is suggested for sustaining positive effects on students’long-term performance in mathematics.This research contributes valuable insights into the practical application and effectiveness of MILAPlus within the context of Grade 9 mathematics education at Quezon National High School.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attaine...This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.展开更多
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and ...The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.展开更多
Quadratic Discrimination Function (QDF) is commonly used in speech emotion recognition, which proceeds on the premise that the input data is normal distribution. In this paper, we propose a transformation to normali...Quadratic Discrimination Function (QDF) is commonly used in speech emotion recognition, which proceeds on the premise that the input data is normal distribution. In this paper, we propose a transformation to normalize the emotional features, emotion recognition. Features based on prosody then derivate a Modified QDF (MQDF) to speech and voice quality are extracted and Principal Component Analysis Neural Network (PCANN) is used to reduce dimension of the feature vectors. The results show that voice quality features are effective supplement for recognition, and the method in this paper could improve the recognition ratio effectively.展开更多
This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types ...This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.展开更多
In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hye...In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hyers-Ulam stability of the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic p-functional equations associated with the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces.展开更多
When all the involved data in indefinite quadratic programs change simultaneously, we show the locally Lipschtiz continuity of the KKT set of the quadratic programming problem firstly, then we establish the locally Li...When all the involved data in indefinite quadratic programs change simultaneously, we show the locally Lipschtiz continuity of the KKT set of the quadratic programming problem firstly, then we establish the locally Lipschtiz continuity of the KKT solution set. Finally, the similar conclusion for the corresponding optimal value function is obtained.展开更多
To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-...To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-type continuity results about the optimal value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of the linear constraints. The obtained results extend some existing results for continuous quadratic programs, and, more importantly, lay the foundation for further theoretical study and corresponding algorithm analysis on mixed-integer quadratic programs.展开更多
In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△=A(t)x on time scales. Moreover, for the nonlinear perturbed equation x△= A(t)x ...In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△=A(t)x on time scales. Moreover, for the nonlinear perturbed equation x△= A(t)x + f(t, x) we give the instability of the zero solution when f is sufficiently small.展开更多
In this paper we analyze the optimal control problem for a class of afflne nonlinear systems under the assumption that the associated Lie algebra is nilpotent. The Lie brackets generated by the vector fields which def...In this paper we analyze the optimal control problem for a class of afflne nonlinear systems under the assumption that the associated Lie algebra is nilpotent. The Lie brackets generated by the vector fields which define the nonlinear system represent a remarkable mathematical instrument for the control of affine systems. We determine the optimal control which corresponds to the nilpotent operator of the first order. In particular, we obtain the control that minimizes the energy of the given nonlinear system. Applications of this control to bilinear systems with first order nilpotent operator are considered.展开更多
In this paper, a novel signal processing technique hasbeen developed to refocus moving targets image from their smeared responses in the Synthetic Aperture Radar (SAR) image according to the characteristics of the rec...In this paper, a novel signal processing technique hasbeen developed to refocus moving targets image from their smeared responses in the Synthetic Aperture Radar (SAR) image according to the characteristics of the received signals for moving targets. Quadratic Phase Function is introduced to the parameters estimation for moving target echo and SAR imaging. Our method is available even under a low SNR environment and acquiring an exact SAR image of moving targets. The simulated results demonstrated the validity of the algorithm proposed.展开更多
A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization pro...A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization problem.We introduce an NCP function into the filter and construct a new SQP-filter algorithm.Such methods are characterized by their use of the dominance concept of multi-objective optimization,instead of a penalty parameter whose adjustment can be problematic.We prove that the algorithm has global convergence and superlinear convergence rates under some mild conditions.展开更多
Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membe...Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membership functions is incorporated in the stability analysis by approximating the original continuous membership functions with staircase membership functions. The stability of the T-S fuzzy systems was investigated based on a quadratic Lyapunov function. The asymptotically necessary and sufficient stability conditions in terms of linear matrix inequalities were derived using a basic inequality. A fuzzy controller was also designed based on the stability results. The derivation process of the stability results is straightforward and easy to understand. Case studies confirmed the validity of the obtained stability results.展开更多
文摘This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadratic equations and functions through a study carried out at Quezon National High School.The research involved 116 Grade 9 students and utilized a quantitative approach,incorporating both pre-assessment and post-assessment measures.The research utilizes a quasi-experimental design,examining the academic performance of students before and after the introduction of MILAPlus.The pre-assessment establishes a baseline,and the subsequent post-assessment measures the impact of the instructional strategy.Statistical analyses,including t-tests,assess the significance of differences in mean scores and mean percentage scores,providing quantitative insights into the effectiveness of MILAPlus.Findings from the study revealed a statistically significant improvement in both mean scores and mean percentage scores after the utilization of MILAPlus,indicating enhanced proficiency in quadratic equations and functions.The Mean Proficiency Scores(MPS)also showed a substantial increase,demonstrating a marked improvement in overall proficiency levels among Grade 9 students.In light of the results,recommendations were given including the continued utilization of MILAPlus as an instructional strategy and aligning its development with prescribed learning competencies.Emphasizing the consistent adherence to policies and guidelines for MILAPlus implementation is suggested for sustaining positive effects on students’long-term performance in mathematics.This research contributes valuable insights into the practical application and effectiveness of MILAPlus within the context of Grade 9 mathematics education at Quezon National High School.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
基金Project partially supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No. 101005)the National Natural Science Foundation of China (Grant No. 60904004)the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No. L08010201JX0720)
文摘This paper investigates the chaos synchronisation between two coupled chaotic Chua's circuits. The sufficient condition presented by linear matrix inequalities (LMIs) of global asymptotic synchronisation is attained based on piecewise quadratic Lyapunov functions. First, we obtain the piecewise linear differential inclusions (pwLDIs) model of synchronisation error dynamics, then we design a switching (piecewise-linear) feedback control law to stabilise it based on the piecewise quadratic Laypunov functions. Then we give some numerical simulations to demonstrate the effectiveness of our theoretical results.
基金supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.
基金the Ministry of Education Fund (No: 20050286001)Ministry of Education "New Century Tal-ents Support Plan" (No:NCET-04-0483)Doctoral Foundation of Ministry of Education (No:20050286001).
文摘Quadratic Discrimination Function (QDF) is commonly used in speech emotion recognition, which proceeds on the premise that the input data is normal distribution. In this paper, we propose a transformation to normalize the emotional features, emotion recognition. Features based on prosody then derivate a Modified QDF (MQDF) to speech and voice quality are extracted and Principal Component Analysis Neural Network (PCANN) is used to reduce dimension of the feature vectors. The results show that voice quality features are effective supplement for recognition, and the method in this paper could improve the recognition ratio effectively.
文摘This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(NRF-2012R1A1A2004299)
文摘In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hyers-Ulam stability of the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic p-functional equations associated with the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces.
基金Supported by the National Natural Science Foundation of China(10571141,70971109,71371152)supported by the Talents Fund of Xi’an Polytechnic University(BS1320)the Mathematics Discipline Development Fund of Xi’an Ploytechnic University(107090701)
文摘When all the involved data in indefinite quadratic programs change simultaneously, we show the locally Lipschtiz continuity of the KKT set of the quadratic programming problem firstly, then we establish the locally Lipschtiz continuity of the KKT solution set. Finally, the similar conclusion for the corresponding optimal value function is obtained.
基金Supported by the National Natural Science Foundation of China(10571141,70971109)the Key Projectof the National Natural Science Foundation of China(70531030)
文摘To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-type continuity results about the optimal value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of the linear constraints. The obtained results extend some existing results for continuous quadratic programs, and, more importantly, lay the foundation for further theoretical study and corresponding algorithm analysis on mixed-integer quadratic programs.
文摘In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△=A(t)x on time scales. Moreover, for the nonlinear perturbed equation x△= A(t)x + f(t, x) we give the instability of the zero solution when f is sufficiently small.
文摘In this paper we analyze the optimal control problem for a class of afflne nonlinear systems under the assumption that the associated Lie algebra is nilpotent. The Lie brackets generated by the vector fields which define the nonlinear system represent a remarkable mathematical instrument for the control of affine systems. We determine the optimal control which corresponds to the nilpotent operator of the first order. In particular, we obtain the control that minimizes the energy of the given nonlinear system. Applications of this control to bilinear systems with first order nilpotent operator are considered.
文摘In this paper, a novel signal processing technique hasbeen developed to refocus moving targets image from their smeared responses in the Synthetic Aperture Radar (SAR) image according to the characteristics of the received signals for moving targets. Quadratic Phase Function is introduced to the parameters estimation for moving target echo and SAR imaging. Our method is available even under a low SNR environment and acquiring an exact SAR image of moving targets. The simulated results demonstrated the validity of the algorithm proposed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10571137,10771162)
文摘A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization problem.We introduce an NCP function into the filter and construct a new SQP-filter algorithm.Such methods are characterized by their use of the dominance concept of multi-objective optimization,instead of a penalty parameter whose adjustment can be problematic.We prove that the algorithm has global convergence and superlinear convergence rates under some mild conditions.
文摘Asymptotically necessary and sufficient quadratic stability conditions of Takagi-Sugeno (T-S) fuzzy systems are obtained by utilizing staircase membership functions and a basic inequality. The information of the membership functions is incorporated in the stability analysis by approximating the original continuous membership functions with staircase membership functions. The stability of the T-S fuzzy systems was investigated based on a quadratic Lyapunov function. The asymptotically necessary and sufficient stability conditions in terms of linear matrix inequalities were derived using a basic inequality. A fuzzy controller was also designed based on the stability results. The derivation process of the stability results is straightforward and easy to understand. Case studies confirmed the validity of the obtained stability results.