A finite difference method for computing the axisymmetric, transonic flows over a nacelle is presented in this paper. By use of the conservative full-potential equation, body-fitted grid, and the exact boundary condit...A finite difference method for computing the axisymmetric, transonic flows over a nacelle is presented in this paper. By use of the conservative full-potential equation, body-fitted grid, and the exact boundary conditions, a new AF scheme is constructed according to the criterion of optimum convergence. The proposed scheme has been applied to transonic nacelle flow problems. Computation for several nacelles shows the rapid convergence of this scheme and excellent agreement with the experimental results.展开更多
The inverse design based on the pressure distribution is an essential approach to realize the improvement of Natural Laminar Flow(NLF) performance for nacelles. However, the direct definition of target pressure distri...The inverse design based on the pressure distribution is an essential approach to realize the improvement of Natural Laminar Flow(NLF) performance for nacelles. However, the direct definition of target pressure distribution at design point is challenging for the dilemma to consider the constraints of shock wave and laminar flow at the same time. In addition, the universality of method will be limited when the inverse design is strongly coupled with the solver. Thus, a double-decoupled methodology based on the relationship of pressure distributions between design and off-design points is proposed in this paper, which realizes the decoupling of constraints in shock wave and laminar flow on target pressure distribution as well as the decoupling of flow field solution and inverse design method. Aimed at an isolated flow-through-nacelle of high bypass ratio, the target pressure distribution with appropriate favorable gradient and shock-free feature is defined according to physical principles at the off-design point of Ma = 0.80 while the transonic and laminar performance are examined at the design point of Ma = 0.85. The solution of flow field is based on γ-Re_(θ) transition model and the inverse design is based on residual-correction method. With the inverse design starting from off-design point, the performance of shock wave and laminar flow at design point are both improved. The local shock wave after the lip of nacelle is eliminated effectively while the streamwise length of laminar flow region is doubled and exceeds to 30% of the chord length. The percentage of drag reduction for outboard surface is 12.7% for friction drag, 7.8%for pressure drag and 10.5% for total drag. The effects of inverse design on the process of transition are analyzed with detailed flow features. The robustness of laminar flow is examined under different variation factors of freestream which are deviated from the design point.展开更多
The inner rotors of distributed propulsion tilt-wing Unmanned Aerial Vehicles(UAVs)are often folded in the cruising state and deployed in vertical take-off and landing to cope with the huge difference in thrust requir...The inner rotors of distributed propulsion tilt-wing Unmanned Aerial Vehicles(UAVs)are often folded in the cruising state and deployed in vertical take-off and landing to cope with the huge difference in thrust requirements.However,the blades of the conventional rotor have poor conformality with the nacelle profile,which will greatly increase the drag of the UAV after folding.This paper proposes an integrated method for the design of rotor and nacelle considering geometric compatibility to reduce the drag of the folded rotor and nacelle,so as to further improve the aerodynamic efficiency in cruise while ensuring the rotor efficiency in the vertical flight mode.A geometric mapping model based on nacelle design parameters and rotor design parameters is established,and a parametric model and aerodynamic optimization model of the outer arc airfoil family are developed.In addition,a rotor performance analysis model and a neural network response surface model for nacelle drag prediction that meet the requirements of confidence level are established.Based on the oblique inflow blade element momentum theory method,numerical simulation method,and genetic algorithm,an integrated optimization framework of the design of the conformal rotor and nacelle is built.Then,a geometrically compatible integrated optimization for the rotor and nacelle is carried out with the objective of maximizing energy efficiency in the full mission profile.Finally,a conformal rotor and nacelle design solution is obtained,which satisfies geometric compatibility and thrust constraints while providing high thrust efficiency and low cruising drag.A comparison of the results of the integrated design and the conventional rotor optimization design shows that the drag of the conventional rotor is 3.45 times that of the conformal integrated design in the cruising state,which proves the effectiveness and necessity of the proposed method.展开更多
Natural laminar flow nacelle is a promising technology for drag reduction.In this paper,an optimization platform is established for the design of transonic axisymmetric and threedimensional natural laminar flow nacell...Natural laminar flow nacelle is a promising technology for drag reduction.In this paper,an optimization platform is established for the design of transonic axisymmetric and threedimensional natural laminar flow nacelles for large civil aircraft.The platform adopts the class/shape transformation method for geometric parameterization,a four-equation transition model for transition prediction,and the differential evolution algorithm combined with the radial basis function surrogate model as the optimization algorithm.The optimized axisymmetric nacelle demonstrates approximately 31%chord length of laminar flow,with the drag reduction of 13.3%.The influence of the Reynolds number and inlet mass flow rate on the optimization result is also investigated.The axis-symmetric nacelle optimization method is further used for the section profile design of a non-axisymmetric nacelle.An equivalent method is used to simulate the different local flow angles at different sections in the circumferential direction of the non-axisymmetric nacelle by using different inlet mass flow rates of the axisymmetric nacelle.The optimized natural laminar flow nacelle maintains over 30%chord length of laminar flow with robustness to the change of the freestream angle of attack.The total drag of the non-axisymmetric nacelle is reduced by 5.4%under cruise conditions.展开更多
Natural Laminar Flow(NLF)technology is very effective for reducing the skin friction drag of aircraft engine nacelle,but the aerodynamic performance of NLF nacelle is highly sensitive to uncertain working conditions.T...Natural Laminar Flow(NLF)technology is very effective for reducing the skin friction drag of aircraft engine nacelle,but the aerodynamic performance of NLF nacelle is highly sensitive to uncertain working conditions.Therefore,it’s imperative to incorporate uncertainties into the design of NLF nacelle.In this study,for a robust optimization of NLF nacelle and for improving its efficiency,an adaptive-surrogate-based robust optimization strategy is established,which is an iterative optimization process where the surrogate model is updated to obtain the real Pareto front of multi-objective optimization problem.A case study is carried out to validate its feasibility and effectiveness.The results show that the optimization increases the favorable pressure gradient region and the volume ratio of the nacelle by increasing its lip radius and reducing its maximum diameter.And the aerodynamic robustness of the NLF nacelle is mainly determined by the lip radius,maximum diameter of nacelle and location of the maximum diameter.Compared to the initial nacelle,the optimized nacelle maintains a wide range of low drag and high laminar flow ratio in the disturbance space,which extends the average laminar flow region to 21.6%and facilitates a decrease of 1.98 counts in the average drag coefficient.展开更多
In view of the engineering background that CK drone aircraft needs modification and upgrading to improve its maneuvering performance,numerical research and analysis of air inlet aerodynamic performance are carried out...In view of the engineering background that CK drone aircraft needs modification and upgrading to improve its maneuvering performance,numerical research and analysis of air inlet aerodynamic performance are carried out.Firstly,based on the introduction of the theoretical knowledge involved in aircraft maneuvering flight,parameters such as aircraft attitude and engine mass flow etc.required for the aerodynamic performance calculation of CK drone aircraft air inlet are determined.By analyzing the test data of WP6 engine inlet distortion simulation board,the typical indexes are extracted as the basis for evaluating the air inlet performance of CK drone aircraft.Then,the aerodynamic characteristics of the inlet of CK drone aircraft under different maneuvering conditions are numerically studied,and the total pressure recovery coefficient and pressure distortion index of the outlet section are obtained.Several conclusions and suggestions are formed after the study.When CK drone aircraft flies at positive angle of attack,the inlet has good aerodynamic characteristics,which can meet the requirements of engine intake during high maneuverable flight.In the flight of negative angle of attack,the total pressure loss and pressure distortion at the outlet section of air inlet increase sharply,which cannot guarantee the stable working of the engine.On the premise that the aircraft attitude is satisfied,CK drone aircraft can use three engine thrust states of"Rated","Modified rated"and"Maximum"for high maneuverable flight.展开更多
The flow over a short intake is characterised by a strong interaction with the fan, that can only be captured when the rotor blades are modelled in the numerical simulations. In this paper, we use a coupled methodolog...The flow over a short intake is characterised by a strong interaction with the fan, that can only be captured when the rotor blades are modelled in the numerical simulations. In this paper, we use a coupled methodology to derive indications about relevant geometric variables affecting the high-incidence operation of an ultra-high bypass ratio turbofan intake with a length-to-diameter ratio of 0.35. By reproducing the effect of the fan through a body force model, we carry out a parametric study of the influence of the contraction ratio and the scarf angle at take-off conditions for a grid of 28 different three-dimensional shapes. The analysis of the selected performance metrics distributions at three angles of attack of 16., 24., and 28. reveals that a contraction ratio higher than 1.20 is needed to avoid separation at high incidence. While for an attached inlet the best performance is found with a moderate scarf angle, in presence of a developed separation the distortion level reduces as the scarf decreases up to negative values. We discuss the correspondence between the distortion indexes and the flow field, highlighting the origin of the detachment for the different geometries, according to the operating condition, and analysing the fan operation in the most distorted case. Finally, we assess the influence of modelling the rotor in the simulations, showing that its suppression effect on the separation at a given incidence depends on the intake geometric features.展开更多
To study the Radar Cross-Section(RCS) characteristics of the tilt-rotor aircraft, a dynamic calculation approach that takes into account rotor rotation and nacelle tilt is presented.Physical optics and physical theory...To study the Radar Cross-Section(RCS) characteristics of the tilt-rotor aircraft, a dynamic calculation approach that takes into account rotor rotation and nacelle tilt is presented.Physical optics and physical theory of diffraction are used to deal with the instantaneous electromagnetic scattering of the target. The RCS of the aircraft in the helicopter mode, fixed-wing mode and transition mode is analyzed. The results show that in the fixed-wing mode, the blade has a weaker deflection effect on the head incident wave in the horizontal plane. The helicopter mode improves the scattering of the rotor in the horizontal plane, while it increases the scattering source on the surface of the nacelle. At a fixed tilt angle, the RCS of the aircraft under a given azimuth angle still shows obvious dynamic characteristics. Dynamic tilting significantly changes the scattering effects of blades, hubs, nacelles and wingtips. The proposed approach is shown to be feasible and effective to learn the electromagnetic scattering characteristics of the tilt rotor aircraft.展开更多
文摘A finite difference method for computing the axisymmetric, transonic flows over a nacelle is presented in this paper. By use of the conservative full-potential equation, body-fitted grid, and the exact boundary conditions, a new AF scheme is constructed according to the criterion of optimum convergence. The proposed scheme has been applied to transonic nacelle flow problems. Computation for several nacelles shows the rapid convergence of this scheme and excellent agreement with the experimental results.
基金supported by the National Natural Science Foundation of China(No.12272312).
文摘The inverse design based on the pressure distribution is an essential approach to realize the improvement of Natural Laminar Flow(NLF) performance for nacelles. However, the direct definition of target pressure distribution at design point is challenging for the dilemma to consider the constraints of shock wave and laminar flow at the same time. In addition, the universality of method will be limited when the inverse design is strongly coupled with the solver. Thus, a double-decoupled methodology based on the relationship of pressure distributions between design and off-design points is proposed in this paper, which realizes the decoupling of constraints in shock wave and laminar flow on target pressure distribution as well as the decoupling of flow field solution and inverse design method. Aimed at an isolated flow-through-nacelle of high bypass ratio, the target pressure distribution with appropriate favorable gradient and shock-free feature is defined according to physical principles at the off-design point of Ma = 0.80 while the transonic and laminar performance are examined at the design point of Ma = 0.85. The solution of flow field is based on γ-Re_(θ) transition model and the inverse design is based on residual-correction method. With the inverse design starting from off-design point, the performance of shock wave and laminar flow at design point are both improved. The local shock wave after the lip of nacelle is eliminated effectively while the streamwise length of laminar flow region is doubled and exceeds to 30% of the chord length. The percentage of drag reduction for outboard surface is 12.7% for friction drag, 7.8%for pressure drag and 10.5% for total drag. The effects of inverse design on the process of transition are analyzed with detailed flow features. The robustness of laminar flow is examined under different variation factors of freestream which are deviated from the design point.
基金the Fundamental Research Funds for the Central Universities(No.56XCA2205402).
文摘The inner rotors of distributed propulsion tilt-wing Unmanned Aerial Vehicles(UAVs)are often folded in the cruising state and deployed in vertical take-off and landing to cope with the huge difference in thrust requirements.However,the blades of the conventional rotor have poor conformality with the nacelle profile,which will greatly increase the drag of the UAV after folding.This paper proposes an integrated method for the design of rotor and nacelle considering geometric compatibility to reduce the drag of the folded rotor and nacelle,so as to further improve the aerodynamic efficiency in cruise while ensuring the rotor efficiency in the vertical flight mode.A geometric mapping model based on nacelle design parameters and rotor design parameters is established,and a parametric model and aerodynamic optimization model of the outer arc airfoil family are developed.In addition,a rotor performance analysis model and a neural network response surface model for nacelle drag prediction that meet the requirements of confidence level are established.Based on the oblique inflow blade element momentum theory method,numerical simulation method,and genetic algorithm,an integrated optimization framework of the design of the conformal rotor and nacelle is built.Then,a geometrically compatible integrated optimization for the rotor and nacelle is carried out with the objective of maximizing energy efficiency in the full mission profile.Finally,a conformal rotor and nacelle design solution is obtained,which satisfies geometric compatibility and thrust constraints while providing high thrust efficiency and low cruising drag.A comparison of the results of the integrated design and the conventional rotor optimization design shows that the drag of the conventional rotor is 3.45 times that of the conformal integrated design in the cruising state,which proves the effectiveness and necessity of the proposed method.
基金co-supported by the National Science and Technology Major Project (No. J2019-II-0006-0026)the 1912 projectthe National Natural Science Foundation of China (Nos. 91852108 and 11872230)
文摘Natural laminar flow nacelle is a promising technology for drag reduction.In this paper,an optimization platform is established for the design of transonic axisymmetric and threedimensional natural laminar flow nacelles for large civil aircraft.The platform adopts the class/shape transformation method for geometric parameterization,a four-equation transition model for transition prediction,and the differential evolution algorithm combined with the radial basis function surrogate model as the optimization algorithm.The optimized axisymmetric nacelle demonstrates approximately 31%chord length of laminar flow,with the drag reduction of 13.3%.The influence of the Reynolds number and inlet mass flow rate on the optimization result is also investigated.The axis-symmetric nacelle optimization method is further used for the section profile design of a non-axisymmetric nacelle.An equivalent method is used to simulate the different local flow angles at different sections in the circumferential direction of the non-axisymmetric nacelle by using different inlet mass flow rates of the axisymmetric nacelle.The optimized natural laminar flow nacelle maintains over 30%chord length of laminar flow with robustness to the change of the freestream angle of attack.The total drag of the non-axisymmetric nacelle is reduced by 5.4%under cruise conditions.
基金financially supported by the Commercial Aircraft Corporation of China Ltd.
文摘Natural Laminar Flow(NLF)technology is very effective for reducing the skin friction drag of aircraft engine nacelle,but the aerodynamic performance of NLF nacelle is highly sensitive to uncertain working conditions.Therefore,it’s imperative to incorporate uncertainties into the design of NLF nacelle.In this study,for a robust optimization of NLF nacelle and for improving its efficiency,an adaptive-surrogate-based robust optimization strategy is established,which is an iterative optimization process where the surrogate model is updated to obtain the real Pareto front of multi-objective optimization problem.A case study is carried out to validate its feasibility and effectiveness.The results show that the optimization increases the favorable pressure gradient region and the volume ratio of the nacelle by increasing its lip radius and reducing its maximum diameter.And the aerodynamic robustness of the NLF nacelle is mainly determined by the lip radius,maximum diameter of nacelle and location of the maximum diameter.Compared to the initial nacelle,the optimized nacelle maintains a wide range of low drag and high laminar flow ratio in the disturbance space,which extends the average laminar flow region to 21.6%and facilitates a decrease of 1.98 counts in the average drag coefficient.
基金supported by the Fundamental Research Funds for the Central Universities(No.56XCA2004806)。
文摘In view of the engineering background that CK drone aircraft needs modification and upgrading to improve its maneuvering performance,numerical research and analysis of air inlet aerodynamic performance are carried out.Firstly,based on the introduction of the theoretical knowledge involved in aircraft maneuvering flight,parameters such as aircraft attitude and engine mass flow etc.required for the aerodynamic performance calculation of CK drone aircraft air inlet are determined.By analyzing the test data of WP6 engine inlet distortion simulation board,the typical indexes are extracted as the basis for evaluating the air inlet performance of CK drone aircraft.Then,the aerodynamic characteristics of the inlet of CK drone aircraft under different maneuvering conditions are numerically studied,and the total pressure recovery coefficient and pressure distortion index of the outlet section are obtained.Several conclusions and suggestions are formed after the study.When CK drone aircraft flies at positive angle of attack,the inlet has good aerodynamic characteristics,which can meet the requirements of engine intake during high maneuverable flight.In the flight of negative angle of attack,the total pressure loss and pressure distortion at the outlet section of air inlet increase sharply,which cannot guarantee the stable working of the engine.On the premise that the aircraft attitude is satisfied,CK drone aircraft can use three engine thrust states of"Rated","Modified rated"and"Maximum"for high maneuverable flight.
文摘The flow over a short intake is characterised by a strong interaction with the fan, that can only be captured when the rotor blades are modelled in the numerical simulations. In this paper, we use a coupled methodology to derive indications about relevant geometric variables affecting the high-incidence operation of an ultra-high bypass ratio turbofan intake with a length-to-diameter ratio of 0.35. By reproducing the effect of the fan through a body force model, we carry out a parametric study of the influence of the contraction ratio and the scarf angle at take-off conditions for a grid of 28 different three-dimensional shapes. The analysis of the selected performance metrics distributions at three angles of attack of 16., 24., and 28. reveals that a contraction ratio higher than 1.20 is needed to avoid separation at high incidence. While for an attached inlet the best performance is found with a moderate scarf angle, in presence of a developed separation the distortion level reduces as the scarf decreases up to negative values. We discuss the correspondence between the distortion indexes and the flow field, highlighting the origin of the detachment for the different geometries, according to the operating condition, and analysing the fan operation in the most distorted case. Finally, we assess the influence of modelling the rotor in the simulations, showing that its suppression effect on the separation at a given incidence depends on the intake geometric features.
基金supported by the Project funded by China Postdoctoral Science Foundation(Nos.BX20200035,2020M680005)。
文摘To study the Radar Cross-Section(RCS) characteristics of the tilt-rotor aircraft, a dynamic calculation approach that takes into account rotor rotation and nacelle tilt is presented.Physical optics and physical theory of diffraction are used to deal with the instantaneous electromagnetic scattering of the target. The RCS of the aircraft in the helicopter mode, fixed-wing mode and transition mode is analyzed. The results show that in the fixed-wing mode, the blade has a weaker deflection effect on the head incident wave in the horizontal plane. The helicopter mode improves the scattering of the rotor in the horizontal plane, while it increases the scattering source on the surface of the nacelle. At a fixed tilt angle, the RCS of the aircraft under a given azimuth angle still shows obvious dynamic characteristics. Dynamic tilting significantly changes the scattering effects of blades, hubs, nacelles and wingtips. The proposed approach is shown to be feasible and effective to learn the electromagnetic scattering characteristics of the tilt rotor aircraft.