Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber c...Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber contains ammonium polyphosphate (APP) as acid source, double pentaerythritol (D-PER) as carbon source and melamine (MN) as gas source. The effects of nano-filler sepiolite and boehmite on the fire-resistant property of EVM rubber based on IFR system were investigated. The test results show that the system with nano-filler of sepiolite B10 has the best fire-resistant property. The process of smoke emission and thermal decomposition, the element composition of char surface and the micro morphology of intumecent char layer of the EVM IFR system with nano-filler were also studied by NBS chamber, thermogravimetric (TG) analysis, X- ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).展开更多
Polymer blend electrolytes, where PEO-PMMA polymer blend is used as polymer host matrix, doped with AgNO3 and plasticized with ethylene carbonate (EC) and Al2O3 as nano-filler were synthesized using the solution cast ...Polymer blend electrolytes, where PEO-PMMA polymer blend is used as polymer host matrix, doped with AgNO3 and plasticized with ethylene carbonate (EC) and Al2O3 as nano-filler were synthesized using the solution cast techniques. The polymer films were characterized by impedance spectroscopy, XRD, DSC, SEM, FT-IR and ionic transport mea-surements. The results indicate an enhancement in conductivity of PEO-PMMA-AgNO3-EC polymer electrolytes. The ionic conductivity of the polymer films is also found to increase with temperature. Electrical properties of polymer films in the framework of dielectric and modulus formalism are studied and展开更多
Purpose: The mechanical strength of polymethyl methacrylate (PMMA) remains far from ideal for maintaining the longevity of denture. The purpose of this study was to evaluate the effect of Zirconium oxide (ZrO2) nanofi...Purpose: The mechanical strength of polymethyl methacrylate (PMMA) remains far from ideal for maintaining the longevity of denture. The purpose of this study was to evaluate the effect of Zirconium oxide (ZrO2) nanofillers powder with different concentration (1.5%, 3%, 5% and 7%) on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. Materials and methods: Zirconium oxide powders with different concentrations (1.5%, 3%, 5% and 7%) were incorporated into heat-cure acrylic resin (PMMA) and processed with optimal condition (2.5:1 Powder/monomer ratio, conventional packing method and water bath curing for 2 hours at 95。C) to fabricate test specimens of PMMA of dimensions (50 × 30 × 30 mm) for the flexural strength, fracture toughness, and (50 × 30 × 30 mm) were fabricated for measuring hardness. PMMA without additives was prepared as a test control. Three types of mechanical tests;flexural strength, fracture toughness and hardness were carried out on the samples. The recorded values of flexural strength in (MPa), fracture toughness in (MPa.m1/2), and hardness (VHN) were collected, tabulated and statistically analyzed. One way analysis of variance (ANOVA) and Tukey’s tests were used for testing the significance between the means of tested groups which are statistically significant when the P value ≤ 0.05. Results: Addition of Zirconium oxide nanofillers to PMMA significantly increased the flexural strength, fracture toughness and hardness. Conclusion: These results indicate that Zirconium oxide nanofillers added to PMMA has a potential as a reliable denture base material with increased flexural strength, fracture toughness, and hardness. According to the results of the present study, the best mechanical properties were achieved by adding 7%wt ZrO2 concentration.展开更多
Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) wit...Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) with pH sensitive response to controlled release of drug in biomedical materials and agriculture industry. The various concentration of carbon nanofiller is used to analyze its effect on the fabricated hydrogel characteristics by using FTIR, SEM, TGA, swelling studies (water, buffer and ionic solution). Spectra of FTIR reflected both established and newly developed groups (like hydrogel). COOH group presence is clearly observed in this range in the carbon filler reinforced hydrogel. The SEM micrographs show that CPG0.003 had a collection of polysaccharide chains as thin helices, which is attributed to the increase in the size of porosity. TGA shows to increase concentration of nanofiller enhanced the thermal stability of the designed hydrogels at temperature 25˚C to 550˚C mass loss percentage decrease upto 20% and increase thermal stability. This pH response made these resultant hydrogels as fruitful competitor against the many reported controlled release application.展开更多
The aim of the present work is to study the effect of Nano-barium sulfate additions on the physic-mechanical properties of hardened cement pastes. Nano-barium sulfate was prepared by the precipitation method. Eight mi...The aim of the present work is to study the effect of Nano-barium sulfate additions on the physic-mechanical properties of hardened cement pastes. Nano-barium sulfate was prepared by the precipitation method. Eight mixes of filled cement pastes containing 0.5 wt%, 1.0 wt%, 1.5 wt% and 2.0 wt% of both nano-barium sulfate and micro-limestone were prepared and compared to the base OPC. The hydration characteristics were evaluated by the measure of combined water content, bulk density, total porosity and compressive strength for samples hydrated up to 90 days. The progress of hydration reactions was followed up by XRD analysis. The morphology and microstructure were studied by SEM. Nano-size barium sulfate acted as a nucleating agent and enhanced the hydration of cement pastes up to 2.0% mass content. Also, the microstructure was improved considerably. Accordingly, nano-size barium sulfate can be used successfully in the preparation of filled cement.展开更多
In recent times, silicone rubber insulating material is used for power transmission line and substation insulation applications. In the present work, tracking and erosion resistance of the micro size filled and nano s...In recent times, silicone rubber insulating material is used for power transmission line and substation insulation applications. In the present work, tracking and erosion resistance of the micro size filled and nano size filled silicone rubber material has been studied under the AC voltage, with ammonium chloride as a contaminant, as per IEC 60587 test procedures. The characteristic changes in the tracking resistance of the micro size and nano size filled specimens are analyzed through leakage current measurement. Comparative Tracking Index (CTI) is also evaluated in order to understand the relative behavior of solid electrical insulating material with regard to their susceptibility to surface tracking. Trend followed by the fundamental, third harmonic and fifth harmonic components of the leakage current during the tracking study are analyzed using moving average current technique. It is observed that the harmonic components of leakage current show good correlation with the tracking and erosion resistance of the material. It is noticed that 5 % wt ofnano size filler gives similar performance to that of 30 % wt of micro size filler in silicone composites.展开更多
基金Sponsored by Project in National Key Technology R&D Program(2006BAE03B05-2)
文摘Sepiolite (S9, B10, B20, B40) and boehmite have been added to an intumecent flame retardant (IFR) system to produce the halogen-free and fire-resistant ethylene-vinyl acetate copolymer (EVM) rubber. The rubber contains ammonium polyphosphate (APP) as acid source, double pentaerythritol (D-PER) as carbon source and melamine (MN) as gas source. The effects of nano-filler sepiolite and boehmite on the fire-resistant property of EVM rubber based on IFR system were investigated. The test results show that the system with nano-filler of sepiolite B10 has the best fire-resistant property. The process of smoke emission and thermal decomposition, the element composition of char surface and the micro morphology of intumecent char layer of the EVM IFR system with nano-filler were also studied by NBS chamber, thermogravimetric (TG) analysis, X- ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM).
文摘Polymer blend electrolytes, where PEO-PMMA polymer blend is used as polymer host matrix, doped with AgNO3 and plasticized with ethylene carbonate (EC) and Al2O3 as nano-filler were synthesized using the solution cast techniques. The polymer films were characterized by impedance spectroscopy, XRD, DSC, SEM, FT-IR and ionic transport mea-surements. The results indicate an enhancement in conductivity of PEO-PMMA-AgNO3-EC polymer electrolytes. The ionic conductivity of the polymer films is also found to increase with temperature. Electrical properties of polymer films in the framework of dielectric and modulus formalism are studied and
文摘Purpose: The mechanical strength of polymethyl methacrylate (PMMA) remains far from ideal for maintaining the longevity of denture. The purpose of this study was to evaluate the effect of Zirconium oxide (ZrO2) nanofillers powder with different concentration (1.5%, 3%, 5% and 7%) on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. Materials and methods: Zirconium oxide powders with different concentrations (1.5%, 3%, 5% and 7%) were incorporated into heat-cure acrylic resin (PMMA) and processed with optimal condition (2.5:1 Powder/monomer ratio, conventional packing method and water bath curing for 2 hours at 95。C) to fabricate test specimens of PMMA of dimensions (50 × 30 × 30 mm) for the flexural strength, fracture toughness, and (50 × 30 × 30 mm) were fabricated for measuring hardness. PMMA without additives was prepared as a test control. Three types of mechanical tests;flexural strength, fracture toughness and hardness were carried out on the samples. The recorded values of flexural strength in (MPa), fracture toughness in (MPa.m1/2), and hardness (VHN) were collected, tabulated and statistically analyzed. One way analysis of variance (ANOVA) and Tukey’s tests were used for testing the significance between the means of tested groups which are statistically significant when the P value ≤ 0.05. Results: Addition of Zirconium oxide nanofillers to PMMA significantly increased the flexural strength, fracture toughness and hardness. Conclusion: These results indicate that Zirconium oxide nanofillers added to PMMA has a potential as a reliable denture base material with increased flexural strength, fracture toughness, and hardness. According to the results of the present study, the best mechanical properties were achieved by adding 7%wt ZrO2 concentration.
文摘Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) with pH sensitive response to controlled release of drug in biomedical materials and agriculture industry. The various concentration of carbon nanofiller is used to analyze its effect on the fabricated hydrogel characteristics by using FTIR, SEM, TGA, swelling studies (water, buffer and ionic solution). Spectra of FTIR reflected both established and newly developed groups (like hydrogel). COOH group presence is clearly observed in this range in the carbon filler reinforced hydrogel. The SEM micrographs show that CPG0.003 had a collection of polysaccharide chains as thin helices, which is attributed to the increase in the size of porosity. TGA shows to increase concentration of nanofiller enhanced the thermal stability of the designed hydrogels at temperature 25˚C to 550˚C mass loss percentage decrease upto 20% and increase thermal stability. This pH response made these resultant hydrogels as fruitful competitor against the many reported controlled release application.
文摘The aim of the present work is to study the effect of Nano-barium sulfate additions on the physic-mechanical properties of hardened cement pastes. Nano-barium sulfate was prepared by the precipitation method. Eight mixes of filled cement pastes containing 0.5 wt%, 1.0 wt%, 1.5 wt% and 2.0 wt% of both nano-barium sulfate and micro-limestone were prepared and compared to the base OPC. The hydration characteristics were evaluated by the measure of combined water content, bulk density, total porosity and compressive strength for samples hydrated up to 90 days. The progress of hydration reactions was followed up by XRD analysis. The morphology and microstructure were studied by SEM. Nano-size barium sulfate acted as a nucleating agent and enhanced the hydration of cement pastes up to 2.0% mass content. Also, the microstructure was improved considerably. Accordingly, nano-size barium sulfate can be used successfully in the preparation of filled cement.
文摘In recent times, silicone rubber insulating material is used for power transmission line and substation insulation applications. In the present work, tracking and erosion resistance of the micro size filled and nano size filled silicone rubber material has been studied under the AC voltage, with ammonium chloride as a contaminant, as per IEC 60587 test procedures. The characteristic changes in the tracking resistance of the micro size and nano size filled specimens are analyzed through leakage current measurement. Comparative Tracking Index (CTI) is also evaluated in order to understand the relative behavior of solid electrical insulating material with regard to their susceptibility to surface tracking. Trend followed by the fundamental, third harmonic and fifth harmonic components of the leakage current during the tracking study are analyzed using moving average current technique. It is observed that the harmonic components of leakage current show good correlation with the tracking and erosion resistance of the material. It is noticed that 5 % wt ofnano size filler gives similar performance to that of 30 % wt of micro size filler in silicone composites.