Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled el...Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled electron beam(exposure)and then selectively removing the exposed or nonexposed regions of the resist in a solvent(developing).It is widely used for fabrication of integrated cir-cuits,mask manufacturing,photoelectric device processing,and otherfields.The key to drawing circular patterns by EBL is the graphics production and control.In an EBL system,an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam,and outputs the corresponding voltage signal through a digital-to-analog converter(DAC)to control a deflector that changes the position of the electron beam.Through this procedure,it is possible to guarantee the accuracy and real-time con-trol of electron beam scanning deflection.Existing EBL systems mostly use the method of polygonal approximation to expose circles.A circle is divided into several polygons,and the smaller the segmentation,the higher is the precision of the splicing circle.However,owing to the need to generate and scan each polygon separately,an increase in the number of segments will lead to a decrease in the overall lithography speed.In this paper,based on Bresenham’s circle algorithm and exploiting the capabilities of afield-programmable gate array and DAC,an improved real-time circle-producing algorithm is designed for EBL.The algorithm can directly generate cir-cular graphics coordinates such as those for a single circle,solid circle,solid ring,or concentric ring,and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography.Compared with the polygonal approximation method,the improved algorithm exhibits improved precision and speed.At the same time,the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm.A complete electron beam deflection system is established to carry out lithography experiments,the results of which show that the error between the exposure results and the preset pat-terns is at the nanometer level,indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.展开更多
Interface emission from heterojunction is a shortcoming for electroluminescent devices.A buffer layer introduced in the heterojunctional interfaces is a potential solution for the challenge.However,the dynamics for ca...Interface emission from heterojunction is a shortcoming for electroluminescent devices.A buffer layer introduced in the heterojunctional interfaces is a potential solution for the challenge.However,the dynamics for carrier tunneling to control the interface emission is still a mystery.Herein,the low-refractive HfO_(2)with a proper energy band configuration is em-ployed as the buffer layer in achieving ZnO-microwire/HfO_(2)/GaN heterojunctional light-emitting diodes(LEDs).The optic-ally pumped lasing threshold and lifetime of the ZnO microwire are reduced with the introduced HfO_(2)layer.As a result,the interface emission is of blue-shift from visible wavelengths to 394 nm whereas the ultraviolet(UV)emission is en-hanced.To regulate the interface recombination between electrons in the conduction band of ZnO and holes in the valence band of GaN,the tunneling electrons with higher conduction band are employed to produce a higher tunneling current through regulation of thin HfO_(2)film causing blue shift and interface emission enhancement.Our results provide a method to control the tunneling electrons in heterojunction for high-performance LEDs.展开更多
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
The Si L2,3 X-ray absorption near-edge structure (XANES) can be used to probe thelocal structure around Si and derive electronic information of the unoccupied s- andd-like partial density of states in nano-size SiO2. ...The Si L2,3 X-ray absorption near-edge structure (XANES) can be used to probe thelocal structure around Si and derive electronic information of the unoccupied s- andd-like partial density of states in nano-size SiO2. We present Si L2,3-edge for threedifferent size silicates acquired by total electron yield (TEY) at the photoemission sta-tion of Beijing Synchrotron Radiation Facility (BSRF). The Si L2,3-edge spectra areinterpreted based on ab initio full multiple-scattering (MS) calculation. The Si L2.3-edge of nano-size materials has XANES similar to that of a-quartz. The similaritiesbetween the Si L2.3-edge shapes attest to a common molecular-orbital picture of theirSi-O bonding and the same coordination state. However, a considerable broadeningof Si L2,3-edge XANES spectra as decrease of particle size is also an indicative ofpolyhedral distortions.展开更多
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy...Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.展开更多
As an emerging organic semiconductor,perylene diimide(PDI)self-assembly has attracted tremendous attention in the aspects of solar cells,sensors,fluorescence probes and n-transistors,etc.In term of photocatalysis,vari...As an emerging organic semiconductor,perylene diimide(PDI)self-assembly has attracted tremendous attention in the aspects of solar cells,sensors,fluorescence probes and n-transistors,etc.In term of photocatalysis,various photocatalysts based on PDI self-assembly exhibit some unique properties,such as intrinsicΠ-Πstacking structure,fast internal charge transfer,band-like electronic structure,flexible structural modifiability,well-defined morphological adjustability and excellent light absorption.This paper mainly presents recent progress on PDI self-assembly regarding how to regulate the electronic structure of PDI self-assembly.In addition,the photocatalytic applications of PDI self-assembly and its complexes were reviewed,such as environmental remedy,energy productions,organic synthesis and photodynamic/photothermal therapy,further highlighting related photocatalytic mechanisms.Finally,the review contents and some perspectives on photocatalytic research of PDI selfassembly were summarized,and some key scientific problems were put forward to direct related photocatalytic research in future.展开更多
The different investigation has been carried out on the biological activities of titanium dioxide nanoparticle but the effect of this nano product on the antibacterial activity of different antibiotics has not been ye...The different investigation has been carried out on the biological activities of titanium dioxide nanoparticle but the effect of this nano product on the antibacterial activity of different antibiotics has not been yet demonstrated. In this study the nano size TiO2 is synthesized using citric acid and alpha dextrose and the enhancement effect of TiO2 nanoparticle on the antibacterial activity of different antibiotics was evaluated against Methicillin-resistant Staphylococcus aureus (MRSA). During the present study, different concentrations of nano-scale TiO2 were tested to find out the best concentration that can have the most effective antibacterial property against the MRSA culture. Disk diffusion method was used to determine the antibacterial activity of these antibiotics in the absence and presence of sub inhibitory concentration of TiO2 nano particle. A clinical isolate of MRSA, isolated from Intensive Care Unit (ICU) was used as test strain. In the presence of sub-inhibitory concentration of TiO2 nanoparticle (20 μg/disc) the antibacterial activities of all antibiotics have been increased against test strain with minimum 2 mm to maximum 10mm. The highest increase in inhibitory zone for MRSA was observed against pencillin G and amikacin (each 10 mm). Conversely, in case of nalidixic acid, TiO2 nanoparticle showed a Synergic effect on the antibacterial activity of this antibiotic against test strain. These results signify that the TiO2 nanoparticle potentate the antimicrobial action of beta lactums, cephalosporins, aminoglycosides, glycopeptides, macrolids and lincosamides, tetracycline a possible utilization of nano compound in combination effect against MRSA.展开更多
A synchronous electronic let-off and take-up device isdesigned.The device is controlled by a single-chipcomputer and driven by two step motors.It has somefunctions such as keeping the warp tension constant dur-ing the...A synchronous electronic let-off and take-up device isdesigned.The device is controlled by a single-chipcomputer and driven by two step motors.It has somefunctions such as keeping the warp tension constant dur-ing the weaving instant,releasing the warp tension whenloom is stopping and straining warp when loom is start-ing.By means of these functions,the stop mark of thewoven fabrics is eliminated.In addition,this device canapply to weaving variant-pick-density fabrics.展开更多
The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L...The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L, calcination temperature 500 °C, calcination time 3.0 h, and the concentration of phosphoric acid of 3.5 mol/L. Ce-nano PO_4^(3-)/ZrO_2 catalyst activities were correlated with the observed physico-chemical characteristics derived from scanning electron microscopy(SEM), FT-infrared(FT-IR), X-ray diffraction(XRD), thermogravimetric(TG) and Brunauer-Emmett-Teller(BET) analysis. The delayed crystallization of ZrO_2 made surface oxides have more defects which were beneficial to the adsorption of PO_4^(3-) by the concentration increment of Ce^(3+). The chemical composition of synthesized biodiesel was confirmed by gas chromatography(GC). The characteristics of Xanthoceras Sorbiflia Bunge oil were found within the optimal range in accordance with Chinese No. 0 diesel standard as a substitute diesel fuel.展开更多
WnC0'± (n= 1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within th...WnC0'± (n= 1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0'± (n= 2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0'± (n= 1-6) clusters are also discussed.展开更多
Kinetic and conductivity of new Schiff bases compounds such ((12Z)N-(5Z)-1-bromo-5-(phenylimino)-1H- pyrrol-2(5 H)-ylidene)benzenamine {ArN(CNBrCCHCH)NAr} (Ar = C6H5) incorporating the chelating diamino ...Kinetic and conductivity of new Schiff bases compounds such ((12Z)N-(5Z)-1-bromo-5-(phenylimino)-1H- pyrrol-2(5 H)-ylidene)benzenamine {ArN(CNBrCCHCH)NAr} (Ar = C6H5) incorporating the chelating diamino has been studied in this paper and was found a second order of this reaction. Electronic Properties using hyperchem program study has been improved for this compound such angel and bond distance, and then this compound was defining as electric conductivity and did prove to be useful for conduclively compound.展开更多
Carbon Nanotubes(CNT)in nanotechnology field are legendary for its strength and chemical inertness.Technically,we can alter carbon nanotubes based on our necessities and requirements such as single layered nanotube,do...Carbon Nanotubes(CNT)in nanotechnology field are legendary for its strength and chemical inertness.Technically,we can alter carbon nanotubes based on our necessities and requirements such as single layered nanotube,double layered nanotube,multi layered nanotube etc.In this paper usage of carbon nanotubes in semiconductor devices such as nanomaterials,molecular dynamics of nanomaterials,heterojunctions using carbon nanotubes,diodes and Graphene Field Effect Transistor(GFET),its characteristics and data analysis are discussed.The major application of carbon nanotubes in electronic circuits is not limiting to improves the electrical and thermal conductivity due to its high stretchability feature and they also have a long life span and better durability over traditional electronic circuit’s materials.展开更多
The geometries, bondings, and vibrational frequencies of C 2n H ( n =3-9) and C 2n -1 N( n =3-9) were investigated by means of density functional theory(DFT). The vertical excitation energies for th...The geometries, bondings, and vibrational frequencies of C 2n H ( n =3-9) and C 2n -1 N( n =3-9) were investigated by means of density functional theory(DFT). The vertical excitation energies for the X 2Π→ 2Π transitions of C 2n H( n =3-9) and for the X 2Σ→ 2Π and the X 2Π→ 2Π transitions of C 2n -1 N( n =3-9) have been calculated by the time-dependent density functional theory(TD-DFT) approach. On the basis of present calculations, the explicit expression for the wavelengths of the excitation energies in linear carbon chains is suggested, namely, λ 0=[1240 6A/(2+[KF(]3n+6-3n+3)](1-B e -Cn ), where A=3 24463, B=0 90742 , and C = 0 07862 for C 2n H, and A=2 94714, B=0 83929 , and C =0 08539 for C 2n -1 N. In consideration of a comparison of the theory with the experiment, both the expressions are modified as λ 1=0 92( λ 0+100) and λ 1= 0 95( λ 0+90) for C 2n H and C 2n -1 N, respectively. (1-B e -Cn ), where A=3 24463, B=0 90742 , and C = 0 07862 for C 2n H, and A=2 94714, B=0 83929 , and C =0 08539 for C 2n -1 N. In consideration of a comparison of the theory with the experiment, both the expressions are modified as λ 1=0 92( λ 0+100) and λ 1= 0 95( λ 0+90) for C 2n H and C 2n -1 N, respectively.展开更多
In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results ...In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results showed that strong phosphorescence could be observed in b-cyclodextrin aqueous solution only at low pH value. This system combined AND and NOT function to produce a three-input inhibit (INH) logic gate.展开更多
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
基金supported by the Focused Ion Beam/Electron Beam Double Beam Microscopy(Grant No.2021YFF0704702).
文摘Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled electron beam(exposure)and then selectively removing the exposed or nonexposed regions of the resist in a solvent(developing).It is widely used for fabrication of integrated cir-cuits,mask manufacturing,photoelectric device processing,and otherfields.The key to drawing circular patterns by EBL is the graphics production and control.In an EBL system,an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam,and outputs the corresponding voltage signal through a digital-to-analog converter(DAC)to control a deflector that changes the position of the electron beam.Through this procedure,it is possible to guarantee the accuracy and real-time con-trol of electron beam scanning deflection.Existing EBL systems mostly use the method of polygonal approximation to expose circles.A circle is divided into several polygons,and the smaller the segmentation,the higher is the precision of the splicing circle.However,owing to the need to generate and scan each polygon separately,an increase in the number of segments will lead to a decrease in the overall lithography speed.In this paper,based on Bresenham’s circle algorithm and exploiting the capabilities of afield-programmable gate array and DAC,an improved real-time circle-producing algorithm is designed for EBL.The algorithm can directly generate cir-cular graphics coordinates such as those for a single circle,solid circle,solid ring,or concentric ring,and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography.Compared with the polygonal approximation method,the improved algorithm exhibits improved precision and speed.At the same time,the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm.A complete electron beam deflection system is established to carry out lithography experiments,the results of which show that the error between the exposure results and the preset pat-terns is at the nanometer level,indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.
基金Ths work was supported by NSFC(11734005.62075041,61821002)Na tional Key Research and Development Program of China(2018YFA0209101,2017YFA0700500).
文摘Interface emission from heterojunction is a shortcoming for electroluminescent devices.A buffer layer introduced in the heterojunctional interfaces is a potential solution for the challenge.However,the dynamics for carrier tunneling to control the interface emission is still a mystery.Herein,the low-refractive HfO_(2)with a proper energy band configuration is em-ployed as the buffer layer in achieving ZnO-microwire/HfO_(2)/GaN heterojunctional light-emitting diodes(LEDs).The optic-ally pumped lasing threshold and lifetime of the ZnO microwire are reduced with the introduced HfO_(2)layer.As a result,the interface emission is of blue-shift from visible wavelengths to 394 nm whereas the ultraviolet(UV)emission is en-hanced.To regulate the interface recombination between electrons in the conduction band of ZnO and holes in the valence band of GaN,the tunneling electrons with higher conduction band are employed to produce a higher tunneling current through regulation of thin HfO_(2)film causing blue shift and interface emission enhancement.Our results provide a method to control the tunneling electrons in heterojunction for high-performance LEDs.
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
基金supported by 100-Tatlent Research Program of The Chinese Academy of Sciencesthe Natinal Natural Science Foundation of China(NSFC)for financial support(Grant No.10074063)The Chinese Academy of Sciences(No.KJ952-S1-418)
文摘The Si L2,3 X-ray absorption near-edge structure (XANES) can be used to probe thelocal structure around Si and derive electronic information of the unoccupied s- andd-like partial density of states in nano-size SiO2. We present Si L2,3-edge for threedifferent size silicates acquired by total electron yield (TEY) at the photoemission sta-tion of Beijing Synchrotron Radiation Facility (BSRF). The Si L2,3-edge spectra areinterpreted based on ab initio full multiple-scattering (MS) calculation. The Si L2.3-edge of nano-size materials has XANES similar to that of a-quartz. The similaritiesbetween the Si L2.3-edge shapes attest to a common molecular-orbital picture of theirSi-O bonding and the same coordination state. However, a considerable broadeningof Si L2,3-edge XANES spectra as decrease of particle size is also an indicative ofpolyhedral distortions.
文摘Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.
基金the National Natural Science Foundation of China(No.21972052).
文摘As an emerging organic semiconductor,perylene diimide(PDI)self-assembly has attracted tremendous attention in the aspects of solar cells,sensors,fluorescence probes and n-transistors,etc.In term of photocatalysis,various photocatalysts based on PDI self-assembly exhibit some unique properties,such as intrinsicΠ-Πstacking structure,fast internal charge transfer,band-like electronic structure,flexible structural modifiability,well-defined morphological adjustability and excellent light absorption.This paper mainly presents recent progress on PDI self-assembly regarding how to regulate the electronic structure of PDI self-assembly.In addition,the photocatalytic applications of PDI self-assembly and its complexes were reviewed,such as environmental remedy,energy productions,organic synthesis and photodynamic/photothermal therapy,further highlighting related photocatalytic mechanisms.Finally,the review contents and some perspectives on photocatalytic research of PDI selfassembly were summarized,and some key scientific problems were put forward to direct related photocatalytic research in future.
文摘The different investigation has been carried out on the biological activities of titanium dioxide nanoparticle but the effect of this nano product on the antibacterial activity of different antibiotics has not been yet demonstrated. In this study the nano size TiO2 is synthesized using citric acid and alpha dextrose and the enhancement effect of TiO2 nanoparticle on the antibacterial activity of different antibiotics was evaluated against Methicillin-resistant Staphylococcus aureus (MRSA). During the present study, different concentrations of nano-scale TiO2 were tested to find out the best concentration that can have the most effective antibacterial property against the MRSA culture. Disk diffusion method was used to determine the antibacterial activity of these antibiotics in the absence and presence of sub inhibitory concentration of TiO2 nano particle. A clinical isolate of MRSA, isolated from Intensive Care Unit (ICU) was used as test strain. In the presence of sub-inhibitory concentration of TiO2 nanoparticle (20 μg/disc) the antibacterial activities of all antibiotics have been increased against test strain with minimum 2 mm to maximum 10mm. The highest increase in inhibitory zone for MRSA was observed against pencillin G and amikacin (each 10 mm). Conversely, in case of nalidixic acid, TiO2 nanoparticle showed a Synergic effect on the antibacterial activity of this antibiotic against test strain. These results signify that the TiO2 nanoparticle potentate the antimicrobial action of beta lactums, cephalosporins, aminoglycosides, glycopeptides, macrolids and lincosamides, tetracycline a possible utilization of nano compound in combination effect against MRSA.
文摘A synchronous electronic let-off and take-up device isdesigned.The device is controlled by a single-chipcomputer and driven by two step motors.It has somefunctions such as keeping the warp tension constant dur-ing the weaving instant,releasing the warp tension whenloom is stopping and straining warp when loom is start-ing.By means of these functions,the stop mark of thewoven fabrics is eliminated.In addition,this device canapply to weaving variant-pick-density fabrics.
基金Supported by Key Laboratory of Bio-based Material Science&Technology(Northeast Forestry University)Ministry of Education(No.SWZCL2016-10)+2 种基金Natural Science Foundation of Inner Mongolia(No.2018BS03004)Talent Development Fund of Inner MongoliaNational Majority R&D Program of China(2017YFD06002025)
文摘The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L, calcination temperature 500 °C, calcination time 3.0 h, and the concentration of phosphoric acid of 3.5 mol/L. Ce-nano PO_4^(3-)/ZrO_2 catalyst activities were correlated with the observed physico-chemical characteristics derived from scanning electron microscopy(SEM), FT-infrared(FT-IR), X-ray diffraction(XRD), thermogravimetric(TG) and Brunauer-Emmett-Teller(BET) analysis. The delayed crystallization of ZrO_2 made surface oxides have more defects which were beneficial to the adsorption of PO_4^(3-) by the concentration increment of Ce^(3+). The chemical composition of synthesized biodiesel was confirmed by gas chromatography(GC). The characteristics of Xanthoceras Sorbiflia Bunge oil were found within the optimal range in accordance with Chinese No. 0 diesel standard as a substitute diesel fuel.
基金supported by the National Natural Science Foundation of China (Grant No. 51072072)
文摘WnC0'± (n= 1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0'± (n= 2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0'± (n= 1-6) clusters are also discussed.
文摘Kinetic and conductivity of new Schiff bases compounds such ((12Z)N-(5Z)-1-bromo-5-(phenylimino)-1H- pyrrol-2(5 H)-ylidene)benzenamine {ArN(CNBrCCHCH)NAr} (Ar = C6H5) incorporating the chelating diamino has been studied in this paper and was found a second order of this reaction. Electronic Properties using hyperchem program study has been improved for this compound such angel and bond distance, and then this compound was defining as electric conductivity and did prove to be useful for conduclively compound.
文摘Carbon Nanotubes(CNT)in nanotechnology field are legendary for its strength and chemical inertness.Technically,we can alter carbon nanotubes based on our necessities and requirements such as single layered nanotube,double layered nanotube,multi layered nanotube etc.In this paper usage of carbon nanotubes in semiconductor devices such as nanomaterials,molecular dynamics of nanomaterials,heterojunctions using carbon nanotubes,diodes and Graphene Field Effect Transistor(GFET),its characteristics and data analysis are discussed.The major application of carbon nanotubes in electronic circuits is not limiting to improves the electrical and thermal conductivity due to its high stretchability feature and they also have a long life span and better durability over traditional electronic circuit’s materials.
基金Supported by the National Natural Science Foundation of China( Nos.2 0 1730 4 2 ,2 0 2 330 2 0 and2 0 0 2 10 0 2 ) and Trans-Century Training Programm e Foundation of the Educational Ministry of China
文摘The geometries, bondings, and vibrational frequencies of C 2n H ( n =3-9) and C 2n -1 N( n =3-9) were investigated by means of density functional theory(DFT). The vertical excitation energies for the X 2Π→ 2Π transitions of C 2n H( n =3-9) and for the X 2Σ→ 2Π and the X 2Π→ 2Π transitions of C 2n -1 N( n =3-9) have been calculated by the time-dependent density functional theory(TD-DFT) approach. On the basis of present calculations, the explicit expression for the wavelengths of the excitation energies in linear carbon chains is suggested, namely, λ 0=[1240 6A/(2+[KF(]3n+6-3n+3)](1-B e -Cn ), where A=3 24463, B=0 90742 , and C = 0 07862 for C 2n H, and A=2 94714, B=0 83929 , and C =0 08539 for C 2n -1 N. In consideration of a comparison of the theory with the experiment, both the expressions are modified as λ 1=0 92( λ 0+100) and λ 1= 0 95( λ 0+90) for C 2n H and C 2n -1 N, respectively. (1-B e -Cn ), where A=3 24463, B=0 90742 , and C = 0 07862 for C 2n H, and A=2 94714, B=0 83929 , and C =0 08539 for C 2n -1 N. In consideration of a comparison of the theory with the experiment, both the expressions are modified as λ 1=0 92( λ 0+100) and λ 1= 0 95( λ 0+90) for C 2n H and C 2n -1 N, respectively.
文摘In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results showed that strong phosphorescence could be observed in b-cyclodextrin aqueous solution only at low pH value. This system combined AND and NOT function to produce a three-input inhibit (INH) logic gate.