Nano-sized hexagonal magnesium hydroxide (Mg(OH)2) with good dispersibility was synthesized by a double injection-hydrothermal method, utilizing polyvinylpyrrolidone (PVP) as an additive and with optimized proce...Nano-sized hexagonal magnesium hydroxide (Mg(OH)2) with good dispersibility was synthesized by a double injection-hydrothermal method, utilizing polyvinylpyrrolidone (PVP) as an additive and with optimized processing parameters. SEM and BET analysis showed that the mean particle size and specific surface area of the Mg(OH)2 particles were 174 nm and 50.77 m^2/g, respectively. The FT-IR spectra and the XRD patterns showed that PVP was adsorbed on the surface of the Mg(OH)2 crystal, thus effectively limiting particle agglomeration and hindering crystal growth along the (1 01 ) plane. TGA showed a decrease in the decomposition temperature and an increase in the weight loss of the Mg(OH)2 particles due to addition of PV/.展开更多
基金financial support of National Natural Science Foundation of China(Contract No. 21176266)
文摘Nano-sized hexagonal magnesium hydroxide (Mg(OH)2) with good dispersibility was synthesized by a double injection-hydrothermal method, utilizing polyvinylpyrrolidone (PVP) as an additive and with optimized processing parameters. SEM and BET analysis showed that the mean particle size and specific surface area of the Mg(OH)2 particles were 174 nm and 50.77 m^2/g, respectively. The FT-IR spectra and the XRD patterns showed that PVP was adsorbed on the surface of the Mg(OH)2 crystal, thus effectively limiting particle agglomeration and hindering crystal growth along the (1 01 ) plane. TGA showed a decrease in the decomposition temperature and an increase in the weight loss of the Mg(OH)2 particles due to addition of PV/.