Some properties of nano SiO 2 modified PVF adhesive were studied. The experimental results show that nano SiO 2 can improve the properties of PVF adhesive very well. Meanwhile the modification mechanism of nano SiO ...Some properties of nano SiO 2 modified PVF adhesive were studied. The experimental results show that nano SiO 2 can improve the properties of PVF adhesive very well. Meanwhile the modification mechanism of nano SiO 2 to PVF adhesive and the applications of this adhesive in paper-plastic composite, concrete and fireproof paint were discussed by using IR and XRD determination.展开更多
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
The emergence of COVID-19 has caused extensive harm and is recognized as a significant threat to human life worldwide. Currently, the application of nanomedicine techniques in pre-clinical studies related to various i...The emergence of COVID-19 has caused extensive harm and is recognized as a significant threat to human life worldwide. Currently, the application of nanomedicine techniques in pre-clinical studies related to various infections, such as respiratory viruses, herpes viruses, human papillomavirus, and HIV, has demonstrated success. Nanoparticles, due to their specific attributes, have garnered considerable attention in combating COVID-19. Strategies employing nanomaterials for COVID-19 prevention encompass the development of rapid, precise diagnostic tools, the creation of effective disinfectants, the delivery of mRNA vaccines to the biological system, and the administration of antiretroviral medications within the body. This article focuses on recent research regarding the effectiveness of nano platforms as antiviral measures against coronaviruses. It delves into the molecular characteristics of coronaviruses and the affected target systems, highlighting challenges and limitations in combating SARS-CoV-2. Additionally, it explores potential nanotechnology-based treatments to confront current and future variants of coronaviruses associated with COVID-19 infections.展开更多
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Ni...Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.展开更多
The pozzolanic activity of nano-SiO2 and silica fume was comparatirely stndied by X-ray diffraction ( XRD ) , differential scanning calorimetry (DSC), scanning electron micrascopy (SEM) and the compressive , bon...The pozzolanic activity of nano-SiO2 and silica fume was comparatirely stndied by X-ray diffraction ( XRD ) , differential scanning calorimetry (DSC), scanning electron micrascopy (SEM) and the compressive , bond and bending streugths of hardened paste and concrete were also measured. Results indicate that the compressive strength development of the paste made from Ca(OH)2 and nano-SiO2, the reaction rate of Ca( OH)2 with nano- SiO2 and the velocity of C-S-H gel formation from Ca ( OH)2 with nano-SiO2 showed marked increases over those of Ca( OH)2 with silica fume. Furthermore, the bond strength at the interface between aggregate and hardened cement paste, and the bending strength of concrete incorporated with 3% .NS increased more than those with SF, especially at early ages. To sum up, the pozzolanic activity of nano-SiO2 was much greater than that of silica fume. The results suggest that with a small amount of nano-SiO2, the Ca( OH)2 crystal at the interface between hardened cement paste and aggregate at early ages may be effectively absorbed in high performance concrete.展开更多
An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various eur...An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various europium ions doping concentrations were carried out. XRD patterns indicate that the samples show an amorphous matrix structure, and the SEM patterns show that the samples present a multi-hole loosen structure, and a rod structure after high-temperature annealling treatment (800 ℃) for 3 h. Raman spectra demonstrate that Y3+ and Eu3+ ions were incorporated into the composites successfully through the sol-gel and post-anneal process. Under the excitation of 387 nm (7F0→5G2) violet light (but not 394 nm (7F0→5L6)), the strongest emission spectrum, the red light, was observed at around 616 nm (5D0→7F2) when the samples were re-treated by annealing at high temperature after 3 months laying aside. Without annealing treatment, the optimized doping mole ratio of Eu ions is about 9%, which is much higher than that doped in SiOglass with the concentration of 3.5%, and it then becomes 5% when the samples are treated by high temperature annealing. In addition, the excitation of 532 nm (7F0→5D1) light can also arouse a comparatively strong emission.展开更多
Unraveling atomic-level active sites of layered photocatalyst towards lowconcentration CO_(2) conversion is still challenging.Herein,the yield and selectivity of photocatalytic CO_(2) reduction of the Aurivillius-rela...Unraveling atomic-level active sites of layered photocatalyst towards lowconcentration CO_(2) conversion is still challenging.Herein,the yield and selectivity of photocatalytic CO_(2) reduction of the Aurivillius-related oxide semiconductor Bi_(2)O_(2)SiO_(3) nanosheet(BOSO)were largely improved using a surface sulfidation strategy.The experiment and theoretical calculation confirmed that surface sulfidation of the Bi_(2)O_(2)SiO_(3) nanosheet(S-BOSO,6.28 nm)redistributed the charge-enriched Bi sites,extended the solar spectrum absorption to the whole visible range,and considerably enhanced the charge separation,in addition to creating new reaction active sites,as compared to pristine BOSO.Subsequently,surface sulfidation played a switchable role,wherein S-BOSO showed a very high CH_(3)OH generation rate(12.78μmol g^(-1) for 4 h,78.6%selectivity)from low-concentration CO_(2)(1000 ppm)under visible light irradiation,which outperforms most of the state-of-the-art photocatalysts under similar conditions.This study presents an atomic-level modification protocol for engineering reactive sites and charge behaviors to promote solar-to-energy conversion.展开更多
文摘Some properties of nano SiO 2 modified PVF adhesive were studied. The experimental results show that nano SiO 2 can improve the properties of PVF adhesive very well. Meanwhile the modification mechanism of nano SiO 2 to PVF adhesive and the applications of this adhesive in paper-plastic composite, concrete and fireproof paint were discussed by using IR and XRD determination.
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
文摘The emergence of COVID-19 has caused extensive harm and is recognized as a significant threat to human life worldwide. Currently, the application of nanomedicine techniques in pre-clinical studies related to various infections, such as respiratory viruses, herpes viruses, human papillomavirus, and HIV, has demonstrated success. Nanoparticles, due to their specific attributes, have garnered considerable attention in combating COVID-19. Strategies employing nanomaterials for COVID-19 prevention encompass the development of rapid, precise diagnostic tools, the creation of effective disinfectants, the delivery of mRNA vaccines to the biological system, and the administration of antiretroviral medications within the body. This article focuses on recent research regarding the effectiveness of nano platforms as antiviral measures against coronaviruses. It delves into the molecular characteristics of coronaviruses and the affected target systems, highlighting challenges and limitations in combating SARS-CoV-2. Additionally, it explores potential nanotechnology-based treatments to confront current and future variants of coronaviruses associated with COVID-19 infections.
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.
文摘Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.
基金Funded bythe Center of Science Research, Zhejiang Universityof Technology of China
文摘The pozzolanic activity of nano-SiO2 and silica fume was comparatirely stndied by X-ray diffraction ( XRD ) , differential scanning calorimetry (DSC), scanning electron micrascopy (SEM) and the compressive , bond and bending streugths of hardened paste and concrete were also measured. Results indicate that the compressive strength development of the paste made from Ca(OH)2 and nano-SiO2, the reaction rate of Ca( OH)2 with nano- SiO2 and the velocity of C-S-H gel formation from Ca ( OH)2 with nano-SiO2 showed marked increases over those of Ca( OH)2 with silica fume. Furthermore, the bond strength at the interface between aggregate and hardened cement paste, and the bending strength of concrete incorporated with 3% .NS increased more than those with SF, especially at early ages. To sum up, the pozzolanic activity of nano-SiO2 was much greater than that of silica fume. The results suggest that with a small amount of nano-SiO2, the Ca( OH)2 crystal at the interface between hardened cement paste and aggregate at early ages may be effectively absorbed in high performance concrete.
基金NSFC (50272063)The Sci-Tec Project of Jiangmen City Nanocomposites (2006-10 &No .2007-11)
文摘An improved sol-gel method was used to prepare Eu3+ ions doped SiO-Y2O3 nanocomposites. Systematic study on the effect of post-annealling treatment on photoluminescence (PL) properties of the samples under various europium ions doping concentrations were carried out. XRD patterns indicate that the samples show an amorphous matrix structure, and the SEM patterns show that the samples present a multi-hole loosen structure, and a rod structure after high-temperature annealling treatment (800 ℃) for 3 h. Raman spectra demonstrate that Y3+ and Eu3+ ions were incorporated into the composites successfully through the sol-gel and post-anneal process. Under the excitation of 387 nm (7F0→5G2) violet light (but not 394 nm (7F0→5L6)), the strongest emission spectrum, the red light, was observed at around 616 nm (5D0→7F2) when the samples were re-treated by annealing at high temperature after 3 months laying aside. Without annealing treatment, the optimized doping mole ratio of Eu ions is about 9%, which is much higher than that doped in SiOglass with the concentration of 3.5%, and it then becomes 5% when the samples are treated by high temperature annealing. In addition, the excitation of 532 nm (7F0→5D1) light can also arouse a comparatively strong emission.
基金Natural Science Foundation of Hubei Province,Grant/Award Number:2021CFB242Research Project of Hubei Provincial Department of Education,Grant/Award Number:Q20202501+3 种基金China Postdoctoral Science Foundation,Grant/Award Number:2020M682878National Natural Science Foundation of China,Grant/Award Numbers:51971124,52104254,52171217State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Grant/Award Number:EIPE22208National Postdoctoral Program for Innovative Talents,Grant/Award Number:BX20200222。
文摘Unraveling atomic-level active sites of layered photocatalyst towards lowconcentration CO_(2) conversion is still challenging.Herein,the yield and selectivity of photocatalytic CO_(2) reduction of the Aurivillius-related oxide semiconductor Bi_(2)O_(2)SiO_(3) nanosheet(BOSO)were largely improved using a surface sulfidation strategy.The experiment and theoretical calculation confirmed that surface sulfidation of the Bi_(2)O_(2)SiO_(3) nanosheet(S-BOSO,6.28 nm)redistributed the charge-enriched Bi sites,extended the solar spectrum absorption to the whole visible range,and considerably enhanced the charge separation,in addition to creating new reaction active sites,as compared to pristine BOSO.Subsequently,surface sulfidation played a switchable role,wherein S-BOSO showed a very high CH_(3)OH generation rate(12.78μmol g^(-1) for 4 h,78.6%selectivity)from low-concentration CO_(2)(1000 ppm)under visible light irradiation,which outperforms most of the state-of-the-art photocatalysts under similar conditions.This study presents an atomic-level modification protocol for engineering reactive sites and charge behaviors to promote solar-to-energy conversion.