[Objective] The paper aimed to study on the effects of photocatalytic degradation of microcystins MC-RR and MC-LR by UV/Fenton/TiO2 in depth lake water.[Method] With Fenton-TiO2 as photocatalyst,the influences of diff...[Objective] The paper aimed to study on the effects of photocatalytic degradation of microcystins MC-RR and MC-LR by UV/Fenton/TiO2 in depth lake water.[Method] With Fenton-TiO2 as photocatalyst,the influences of different reaction time,initial pH value,H2O2 concentration,Fe2+ concentration,TiO2 dosage,light intensity,initial concentration of microcystin on UV/Fenton/TiO2 heterogeneous photocatalytic degradation of microcystin were investigated,and removal effects of microcystin between heterogeneous photocatalytic degradation and UV photolysis were compared at the same time.[Result] Under the conditions that the initial concentration of H2O2 was 0.1 mmol/L,[H2O2]/[FeSO4] was 15:1,pH value was 4.0,the distance between the reaction solution and UV lamp tube was 1 cm,TiO2 dosage was 0.05 g/L,reaction temperature was (16±2) ℃,the removal rate of MC-RR with concentration of 0.35 mg/L and MC-LR with concentration of 0.29 mg/L could reach 91.5% and 90.2% after 3 minutes reacting.[Conclusion] UV/Fenton/TiO2 photocatalytic oxidation was proved to be effective in degradating microcystins.展开更多
Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to ...Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to study the relationship between the initial concentration of ammonia and the degradation products competing to be adsorbed on catalyst surface. Degradation of ammonia and its products were detected by spectrophotometry and catalytic kinetic spectrophotometry, respectively. Results On the one hand, TiO2 catalyst was excellent for degradation of ammonia, and the crystal phase of TiO2, anatase or ruffle, had little effect on degradation of ammonia, but the conversion of ammonia grew with the increase of catalyst content. On the other hand, apparent rate constant and conversion of ammonia decreased with the increase of initial concentration of ammonia, and the photocatalytic degradation reaction followed a pseudo-first-order expression due to-the evidence of linear correlation between -lnC/C0 vs. irradiation time t, but the relationship between initial concentration and the degradation products was not linear in low initial concentration. Conclusion Whether the photocatalytic degradation of ammonia in static state follows a first-order reaction depends on the initial ammonia concentration due to competition in adsorption between reactant and the degradation products.展开更多
The crystal form of TiO_2 is a crucial focus of research on the photocatalytic degradation of gaseous pollutants by TiO_2-based composite photocatalysts. To explore the synergistic effect of mixed crystalline TiO_2 on...The crystal form of TiO_2 is a crucial focus of research on the photocatalytic degradation of gaseous pollutants by TiO_2-based composite photocatalysts. To explore the synergistic effect of mixed crystalline TiO_2 on gaseous organic-pollutant photocatalytic degradation, we synthesized a series of TiO_2 nanoparticles with controllable phase ratios. We explored the role of the TiO_2 phase ratio on the photocatalytic activity and degradation pathway in the photodegradation of 2-propanol(IPA). We estimated the crystallite size and crystal proportions of anatase and rutile by X-ray diffraction. We used the Brunauer-Emmett-Teller method to calculate the specific surface area and Fourier transform infrared spectroscopy to characterize the surface chemistry of the samples. Our results show the photocatalytic activities of pure anatase and the sample with 8.6% rutile to be much better than those of the samples with a phase junction and pure rutile. As such, anatase is the better option for the study of photodegradation design and preparation of gas-phase organic pollutants.展开更多
In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated....In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated. The effect of Fe^3+ participation, the degradation kinetics of SD, the effect of SD mineralization and the possible mechanism of Fe^3+ participation in TiO2 suspension are analyzed by adding FeCl3, taking samples at a given time and determining the SD concentration. Results indicate that the degradation of SD catalyzed by TiO2/ Fe^3+ is faster than that catalyzed by TiO2 or Fe^3+ separately. The photocatalytic degradation of SD follows the pseudo-first- order kinetics model in a range of 20 to 80 mg/L of initial concentration. The mineralization rate of SD can be enhanced by the addition of Fe^3+ in the TiO2 suspended solution. The mechanism of the rapid degradation of SD is proposed, which indicates that Fe^3+ adsorbed on the surface of TiO2 particles acts as an electron acceptor. The amount of recombining electronhole pairs decreases, and the amount of hydroxyl radicals increases. The increased hydroxyl radical strengthens the degradation of SD in the TiO2/Fe^3+ suspended solution.展开更多
The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflecta...The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflectance spectra show that the absorbancy range of eosin/TiO2 is expanded from 378 nm (TiO2 ) to about 600 nm. The photocatalitic degradation of phenol is almost stopped when the eosin/TiO2 system is saturated with N2 , which indicates the significance of O2 . The addition of NaN 3 (a quencher of single oxygen) causes about a 62% decrease in the phenol degradation. The phenol degradation ratio is dropped from 92% to 75% when the isopropanol (a quencher of hydroxyl radical) is present in the system. The experimental results show that there are singlet oxygen and hydroxyl radical generated in the eosin/TiO2 system under visible light irradiation. The changes of absorbancy indicate that the hydrogen peroxide might be produced. Through the analysis and comparison, it is found that the singlet oxygen is the predominant active radical for the degradation of phenol.展开更多
The photocatalytic degradation of the synthetic textile dye Reactive Yellow 145 (RY 145) in aqueous solution, using TiO2 coated non-woven fibers as photocatalyst, under UV-lamp irradiation, was studied. The effects of...The photocatalytic degradation of the synthetic textile dye Reactive Yellow 145 (RY 145) in aqueous solution, using TiO2 coated non-woven fibers as photocatalyst, under UV-lamp irradiation, was studied. The effects of the operational parameters such as initial dye concentration, pH, addition of oxidant hydrogen peroxide and addition of ethanol on the reaction rate were investigated. The effect of some inorganic ions such as and , commonly present in real effluents, on the photodegradation of RY 145 was also examined. The experimental results showed that the photocatalytic degradation rate was favoured by a high concentration of solution in respect to Langmuir-Hinshelwood model. The maximum rate of complete decolorization of RY 145 was observed in the acidic medium at pH 3. The presence of and anions led to an increase of the effectiveness of the photocatalytic degradation. However, the presence of and anions decreased differently the photodegradation reaction rate. TiO2/UV process was proved to be capable of the complete degradation of the RY 145.展开更多
In situ FTIR spectroscopy was utilized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment ...In situ FTIR spectroscopy was utilized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.展开更多
Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow ...Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow loop reactor. UV lump, Black Light Blue (BLB) emitting at maximum wavelength of 365 nm and Ahlstrom Research Service paper consistent of TiO2 P500 coated on non woven paper was used respectively as source of UV light and photocatalyst. At natural pH, the result shows that photolysis of RB5 and its adsorption in the presence of photocatalyst was negligible while the photocatalytic oxidation (PCO) permits 30.8% of RB5 degradation. The degradation of dye was studied under a variety of conditions such as volumetric flow rate, initial pH, photocatalyst reuse, and in the presence of electron acceptor such as sodium persulphate ((Na)2S2O8). The degradation rates were found to be strongly influenced by all the above parameters. The circulation flow rate of 108 L/h was the best. The rate constant calculated when the initial pH was varied shows that pH 3 was more favorable for RB5 removal. Peroxydisulphate ions have the strong effect on RB5 discoloration even in dark without and with photocatalyst. When UV light was used in the presence of photocatalyst, 50 min was enough for quasi-total removal of RB5 with (0.2 M).展开更多
The dye-sensitized TiO2 method is one of the most promising methods for the visible-light-induced detoxification of pollutants. The reaction mechanism for photocatalytic degradation of orange II (OII) and rhodamine B ...The dye-sensitized TiO2 method is one of the most promising methods for the visible-light-induced detoxification of pollutants. The reaction mechanism for photocatalytic degradation of orange II (OII) and rhodamine B (RhB) with self-sensitized TiO2 under visible light irradiation (λ > 400 nm) has been evaluated. Radical scavenger studies were carried out to investigate the active species involved in the photodegradation of 5 mg/L of initial concentration of OII and RhB at room temperature. The trapping effects of different scavengers results proved that the oxidation of OII and RhB mainly occurred by the direct oxidization of h+ and ·O2- radicals, while the ·OH radicals played only a relatively minor role in the direct oxidization process.展开更多
The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were be...The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were better, compared with those obtained with bare TiO2 and Pt-doped TiO2. The effect of various experimental factors, such as photocatalytic dosage, temperature, solution pH and light intensity on the photocatalytic degradation of EDTA by Fe-doped TiO2 was investigated. The photocatalytic degradation treatment for the wastewater containing EDTA is simple, easy handling and low cost.展开更多
To promote the photocatalytic performance TiO2 and enlarge its application in visible region, carbon doped TiO2 (C/TiO2) composites were synthesized by wet impregnation method using sucrose as a precursor and used for...To promote the photocatalytic performance TiO2 and enlarge its application in visible region, carbon doped TiO2 (C/TiO2) composites were synthesized by wet impregnation method using sucrose as a precursor and used for phenol photocatalytic reaction. The synthesized products were characterized by Nitrogen adsorption-desorption isotherms (BET), X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible diffuse reflectance spectroscopy (UV-vis) techniques. The results showed that the obtained TiO2 was anatase phase in the C/TiO2 products, and its crystallite size was 11.7 nm, respectively. Carbon amount and calcined temperature of C/TiO2 can promote phenol removal. In this experiment, 5% carbon and 500 ℃ are the best choice for photocatalyst preparation. Under the UV light irradiation, 5%C/TiO2 (500 ℃, 2 h) exhibited the efficiency of 70.0% for phenol degradation within 150 min whereas TiO2 (500 ℃, 2 h) had 53.0% in the same duration of time. Also 5%C/TiO2 (500 ℃, 2 h) has higher photocatalytic performance under sunlight than pure TiO2. A combination of factors that include the smallest crystalline size, higher anatase percent, less band gap energy value and more oxygen vacant resulted in higher photocatalytic activities of 5%C/TiO2 (500 ℃, 2 h).展开更多
Photocatalytic degradation of dicofol was investigated on TiO2 nano particles (TiO2-NPs) under UV light irradiation. It was shown that dicofol could be completely degraded into inorganic chloride ion under the conditi...Photocatalytic degradation of dicofol was investigated on TiO2 nano particles (TiO2-NPs) under UV light irradiation. It was shown that dicofol could be completely degraded into inorganic chloride ion under the condition of 0.25 mg/mL TiO2-NPs, 2 h irradiation of 400 W high pressure mercury lamp with a wavelength of 365 nm and air at a rate of 100 mL/min. The effects of the experimental conditions, in-cluding the amount of TiO2-NPs, irradiation time and the intensity of light, were studied. The apparent photodegradation rate constant was 0.167/min under the optimal condition. The photocatalytic degra-dation mechanism of dicofol was also discussed.展开更多
( CdS/ TiO2 )/ MCM-41 loaded nanometer photocatalyst was prepared by the sol-gel method and dipping process, the photocatalytic degradation of methyl thionine chloride in water was investigated by using the photocat...( CdS/ TiO2 )/ MCM-41 loaded nanometer photocatalyst was prepared by the sol-gel method and dipping process, the photocatalytic degradation of methyl thionine chloride in water was investigated by using the photocatalyst. The experimental results show that the optimum concentration of CdS over TiO2 was 3% ( molar ratio ), the photocatalytic activity was enhanced when making TiO2 the anatase ptase with a rise of the roasting temperature, and the carrier, mesoporous molecular sieve MCM-41, was beneficial to improving the photocatalytic activity of TiO2 for photocatalytic degradation of methyl thionine chloride. The morphology and the crystalline phase of the photocatalyst were discussed by means of XRD and SEM techniques, and the reaction mechanism of catalytic properties was also discussed.展开更多
Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SE...Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SEM analyses revealed that the surface of the film did not exhibit cracks in the presence of TTIP as a binder in the TiO2 P25 suspension. The following parameters were studied in continuous mode operation: the flow rate in the reactor, the initial concentration of the paraquat, the pH of the solution, the weight of photocatalytic material with the number of foams in the reactor and the weight of the catalyst deposited onto the support. The results showed that by working under optimal operating conditions at natural pH (pH = 6.7), low paraquat (Co = 10 ppm), and flow (26 mL/min), we recorded approximately (43.16 ± 1.00)% oxidation of paraquat and a decrease in total organic carbon (TOC) of (27.13 ± 1.00)% after about 70 minutes. The apparent rate constant is in the order of (0.0656 ± 0.0010) min-1. In addition, by increasing the amount of β-SiC foams coated with TiO2, we improve the degradation of paraquat in the same order. The study of aging of the material showed its stability over time. However, photocatalytic activity was limited after 20 minutes of UV irradiation due to the limitation of the diffusion of the paraquat molecules towards the surface of the photocatalyst. As an outcome, we obtained an efficient TiO2/β-SiC material for photocatalytic degradation of organic compounds in water.展开更多
A new upconversion luminescence agent, 40CdF2·60BaF2·0.8ErO3, was synthesized and its fluorescent spectra were determined. This upconversion luminescence agent can emit five upconversion fluorescent peaks sh...A new upconversion luminescence agent, 40CdF2·60BaF2·0.8ErO3, was synthesized and its fluorescent spectra were determined. This upconversion luminescence agent can emit five upconversion fluorescent peaks shown in the fluorescent spectra whose wavelengths are all below 387 nm under the excitation of 488 nm visible light. This upconversion luminescence agent was mixed into nano rutile TiO2 powder by ultrasonic and boiling dispersion and the novel doped nano TiO2 photocatalyst utilizing visible light was firstly prepared. The doped TiO2 powder was charactered by XRD and TEM and its photocatalytic activity was tested through the photocatalytic degradation of methyl orange as a model compound under the visible light irradiation emitted by six three basic color lamps. In order to compare the photocatalytic activities, the same experiment was carried out for undoped TiO2 powder. The degradation ratio of methyl orange in the presence of doped nano TiO2 powder reached 32.5% under visible light irradiation at 20 h which was obviously higher than the corresponding 1.64% in the presence of undoped nano TiO2 powder, which indicate the upconversion luminescence agent prepared as dopant can effectively turn visible lights to ultraviolet lights that are absorbed by nano TiO2 particles to produce the electron-cavity pairs. All the results show that the nano rutile TiO2 powder doped with upconversion luminescence agent is a promising photocatalyst using sunlight for treating the industry dye wastewater in great force.展开更多
The photocatalytic degradation of phenol and 4-chlorophenol (4-CP) in aqueous suspensions with the use of titanium dioxide (TiO2 ) under UV irradiation was examined. The effects of different supporting materials m...The photocatalytic degradation of phenol and 4-chlorophenol (4-CP) in aqueous suspensions with the use of titanium dioxide (TiO2 ) under UV irradiation was examined. The effects of different supporting materials mixed physically with TiO2 were studied to achieve maximum degradation efficiency. Among the three supports, namely activated carbon (AC), silica (SiO2 ) and zeolite (ZSM-5), all exhibited paramount efficiency for degradation of phenol and 4-CP and was better than TiO2 alone. The optimum concentration was found to be 50 mg for all supporting materials. The efficiency order of the three supports was as follows: AC 〉 ZSM-5 〉 SiO2 , respectively. Whilst, the degradation of phenol and 4-CP was improved from 70.6% to 87.6% and 80.6% to 89.7%, respectively, within 120 min photocatalysis in the presence of optimal amount of AC. The degradation was also comparatively enhanced in the presence of cheaper rice husk and the activity was closed to ZSM-5 and lower than AC.展开更多
The photocatalytic degradation of dye pollutant sulforhodamine-B (SRB) in aqueous titanium dioxide (TiO2) dispersions was examined under three lighting regimes: UV light (330 nm〈λ〈 380 nm), sunlight, and vis...The photocatalytic degradation of dye pollutant sulforhodamine-B (SRB) in aqueous titanium dioxide (TiO2) dispersions was examined under three lighting regimes: UV light (330 nm〈λ〈 380 nm), sunlight, and visible light (λ〉450 nm), all investigated at pH=2.5. Total organic carbon (TOC) and chemical oxygen demand (CODer) assays show that the degradation rate of SRB is much higher when irradiated with UV and sunlight compared with visible light. The temporal concentration changes of SRB illustrated a first-order reaction and the rate constant, k, is 0.197 min^-1, 0.152 min^-1, 0.027 min^-1, respectively, under the three lighting conditions. The final mineralized products were amine compounds identified by infrared spectrophotometry. When irradiated with visible light, the photocatalytic degradation rate could be improved by lowering the H2O2 concentration and inhibited by increasing the H2O2 concentration, but results contrary to the above were obtained when UV light was used for irradiation.展开更多
Photocatalytic oxidation(PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO 2 powder ...Photocatalytic oxidation(PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO 2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO 2(i. e. pillar pellets ranging from 2 5 to 5 3 mm long and with a diameter of 3 7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor(FPR) and UV light source(blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO 2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO 2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO 2 powder. At least TiO 2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.展开更多
Hierarchical TiO2 hollow nanoboxes(TiO2‐HNBs)assembled from TiO2 nanosheets(TiO2‐NSs)show improved photoreactivity when compared with the building blocks of discrete TiO2‐NSs.However,TiO2‐HNBs can only be excited ...Hierarchical TiO2 hollow nanoboxes(TiO2‐HNBs)assembled from TiO2 nanosheets(TiO2‐NSs)show improved photoreactivity when compared with the building blocks of discrete TiO2‐NSs.However,TiO2‐HNBs can only be excited by ultraviolet light.In this paper,visible‐light‐responsive N and S co‐doped TiO2‐HNBs were prepared by calcining the mixture of cubic TiOF2 and methionine(C5H11NO2S),a N‐and S‐containing biomacromolecule.The effect of calcination temperature on the structure and performance of the TiO2‐HNBs was systematically studied.It was found that methionine can prevent TiOF2‐to‐anatase TiO2 phase transformation.Both N and S elements are doped into the lattice of TiO2‐HNBs when the mixture of TiOF2 and methionine undergoes calcination at 400°C,which is responsible for the visible‐light response.When compared with that of pure 400°C‐calcined TiO2‐HNBs(T400),the photoreactivity of 400°C‐calcined methionine‐modified TiO2‐HNBs(TM400)improves 1.53 times in photocatalytic degradation of rhodamine‐B dye under visible irradiation(?>420 nm).The enhanced visible photoreactivity of methionine‐modified TiO2‐HNBs is also confirmed by photocatalytic oxidation of NO.The successful doping of N and S elements into the lattice of TiO2‐HNBs,resulting in the improved light‐harvesting ability and efficient separation of photo‐generated electron‐hole pairs,is responsible for the enhanced visible photocatalytic activity of methionine‐modified TiO2‐HNBs.The photoreactivity of methionine modified TiO2‐HNBs remains nearly unchanged even after being recycled five times,indicating its promising use in practical applications.展开更多
An activated foam-structured carbon-ceramic(AFCC) was prepared and investigated as TiO2 support for the photocatalytic degradation of phenol. AFCC and TiO2/AFCC catalysts were characterized by N2 adsorption- desorpt...An activated foam-structured carbon-ceramic(AFCC) was prepared and investigated as TiO2 support for the photocatalytic degradation of phenol. AFCC and TiO2/AFCC catalysts were characterized by N2 adsorption- desorption and X-ray diffraction(XRD). The effects of AFCC on the photocatalytic activity and the crystallinity of TiO2 were studied. The results show that the crystallinity and anatase/rutile ratio of TiO2 loaded on AFCC could be significantly influenced by the calcination temperature. The degradation rate of phenol benefited from the synergistic effects of the adsorption of activated carbon(AC) and the photocatalysis of TiO2, which suggests that a high surface area of AC is essential to achieve high degradation rates and efficiencies. It was found that the larger mean cell size of AFCC increased the lizht transmission within the foam.展开更多
基金Supported by the Social Development Scientific and Technolgical Project[GKHS-2007-1007]The Special Funds for Top Talents [GSZH-2007-108]The Special Project for Improving Researeh Conditionsof Guizhou [TZJF-2007-15]
文摘[Objective] The paper aimed to study on the effects of photocatalytic degradation of microcystins MC-RR and MC-LR by UV/Fenton/TiO2 in depth lake water.[Method] With Fenton-TiO2 as photocatalyst,the influences of different reaction time,initial pH value,H2O2 concentration,Fe2+ concentration,TiO2 dosage,light intensity,initial concentration of microcystin on UV/Fenton/TiO2 heterogeneous photocatalytic degradation of microcystin were investigated,and removal effects of microcystin between heterogeneous photocatalytic degradation and UV photolysis were compared at the same time.[Result] Under the conditions that the initial concentration of H2O2 was 0.1 mmol/L,[H2O2]/[FeSO4] was 15:1,pH value was 4.0,the distance between the reaction solution and UV lamp tube was 1 cm,TiO2 dosage was 0.05 g/L,reaction temperature was (16±2) ℃,the removal rate of MC-RR with concentration of 0.35 mg/L and MC-LR with concentration of 0.29 mg/L could reach 91.5% and 90.2% after 3 minutes reacting.[Conclusion] UV/Fenton/TiO2 photocatalytic oxidation was proved to be effective in degradating microcystins.
基金This work has been supported by Shandong Provincial Scientific Council, People’s Republic of China (Grant No. Z2000B01)
文摘Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to study the relationship between the initial concentration of ammonia and the degradation products competing to be adsorbed on catalyst surface. Degradation of ammonia and its products were detected by spectrophotometry and catalytic kinetic spectrophotometry, respectively. Results On the one hand, TiO2 catalyst was excellent for degradation of ammonia, and the crystal phase of TiO2, anatase or ruffle, had little effect on degradation of ammonia, but the conversion of ammonia grew with the increase of catalyst content. On the other hand, apparent rate constant and conversion of ammonia decreased with the increase of initial concentration of ammonia, and the photocatalytic degradation reaction followed a pseudo-first-order expression due to-the evidence of linear correlation between -lnC/C0 vs. irradiation time t, but the relationship between initial concentration and the degradation products was not linear in low initial concentration. Conclusion Whether the photocatalytic degradation of ammonia in static state follows a first-order reaction depends on the initial ammonia concentration due to competition in adsorption between reactant and the degradation products.
基金supported by the National Natural Science Foundation of China (Nos.21406164,21466035,51203111)the National Basic Research Program of China("973" program,Nos.2012CB720100,2014CB239300)
文摘The crystal form of TiO_2 is a crucial focus of research on the photocatalytic degradation of gaseous pollutants by TiO_2-based composite photocatalysts. To explore the synergistic effect of mixed crystalline TiO_2 on gaseous organic-pollutant photocatalytic degradation, we synthesized a series of TiO_2 nanoparticles with controllable phase ratios. We explored the role of the TiO_2 phase ratio on the photocatalytic activity and degradation pathway in the photodegradation of 2-propanol(IPA). We estimated the crystallite size and crystal proportions of anatase and rutile by X-ray diffraction. We used the Brunauer-Emmett-Teller method to calculate the specific surface area and Fourier transform infrared spectroscopy to characterize the surface chemistry of the samples. Our results show the photocatalytic activities of pure anatase and the sample with 8.6% rutile to be much better than those of the samples with a phase junction and pure rutile. As such, anatase is the better option for the study of photodegradation design and preparation of gas-phase organic pollutants.
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 1105007001 )the Ph. D. Programs Foundation of Ministry of Education of China (No. 20100092120018)the Natural Science Foundation of Jiangsu Province (No. BK2009453)
文摘In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated. The effect of Fe^3+ participation, the degradation kinetics of SD, the effect of SD mineralization and the possible mechanism of Fe^3+ participation in TiO2 suspension are analyzed by adding FeCl3, taking samples at a given time and determining the SD concentration. Results indicate that the degradation of SD catalyzed by TiO2/ Fe^3+ is faster than that catalyzed by TiO2 or Fe^3+ separately. The photocatalytic degradation of SD follows the pseudo-first- order kinetics model in a range of 20 to 80 mg/L of initial concentration. The mineralization rate of SD can be enhanced by the addition of Fe^3+ in the TiO2 suspended solution. The mechanism of the rapid degradation of SD is proposed, which indicates that Fe^3+ adsorbed on the surface of TiO2 particles acts as an electron acceptor. The amount of recombining electronhole pairs decreases, and the amount of hydroxyl radicals increases. The increased hydroxyl radical strengthens the degradation of SD in the TiO2/Fe^3+ suspended solution.
基金Project(8451063201001261) supported by the Guangdong Natural Science Fund Committee,ChinaProject(LYM08022) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China+1 种基金Project (2007A032400001, 2008A030202010) supported by the Scientific and Technological Planning of Guangdong Province,ChinaProject(216113132) supported by the Scientific Research Cultivation and Innovation Fund, Jinan University,China
文摘The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflectance spectra show that the absorbancy range of eosin/TiO2 is expanded from 378 nm (TiO2 ) to about 600 nm. The photocatalitic degradation of phenol is almost stopped when the eosin/TiO2 system is saturated with N2 , which indicates the significance of O2 . The addition of NaN 3 (a quencher of single oxygen) causes about a 62% decrease in the phenol degradation. The phenol degradation ratio is dropped from 92% to 75% when the isopropanol (a quencher of hydroxyl radical) is present in the system. The experimental results show that there are singlet oxygen and hydroxyl radical generated in the eosin/TiO2 system under visible light irradiation. The changes of absorbancy indicate that the hydrogen peroxide might be produced. Through the analysis and comparison, it is found that the singlet oxygen is the predominant active radical for the degradation of phenol.
文摘The photocatalytic degradation of the synthetic textile dye Reactive Yellow 145 (RY 145) in aqueous solution, using TiO2 coated non-woven fibers as photocatalyst, under UV-lamp irradiation, was studied. The effects of the operational parameters such as initial dye concentration, pH, addition of oxidant hydrogen peroxide and addition of ethanol on the reaction rate were investigated. The effect of some inorganic ions such as and , commonly present in real effluents, on the photodegradation of RY 145 was also examined. The experimental results showed that the photocatalytic degradation rate was favoured by a high concentration of solution in respect to Langmuir-Hinshelwood model. The maximum rate of complete decolorization of RY 145 was observed in the acidic medium at pH 3. The presence of and anions led to an increase of the effectiveness of the photocatalytic degradation. However, the presence of and anions decreased differently the photodegradation reaction rate. TiO2/UV process was proved to be capable of the complete degradation of the RY 145.
基金This work was supported financially by the National Natural Science Foundation of China(No.20133010)Education Department of Fujian(No.JB04238).
文摘In situ FTIR spectroscopy was utilized to investigate the magnetic field effect on the heterogeneous photocatalytic degradation of benzene over platinized titania (Pt/TiO2). The results revealed that the employment of magnetic field may not change the mechanism of photocatalytic degradation of benzene, however, it greatly facilitate the conversion of benzene to phenol and quinone, as well as the transformation from phenol to quinone, resulting in opening the benzene ring easily and promoting the production of CO2.
文摘Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow loop reactor. UV lump, Black Light Blue (BLB) emitting at maximum wavelength of 365 nm and Ahlstrom Research Service paper consistent of TiO2 P500 coated on non woven paper was used respectively as source of UV light and photocatalyst. At natural pH, the result shows that photolysis of RB5 and its adsorption in the presence of photocatalyst was negligible while the photocatalytic oxidation (PCO) permits 30.8% of RB5 degradation. The degradation of dye was studied under a variety of conditions such as volumetric flow rate, initial pH, photocatalyst reuse, and in the presence of electron acceptor such as sodium persulphate ((Na)2S2O8). The degradation rates were found to be strongly influenced by all the above parameters. The circulation flow rate of 108 L/h was the best. The rate constant calculated when the initial pH was varied shows that pH 3 was more favorable for RB5 removal. Peroxydisulphate ions have the strong effect on RB5 discoloration even in dark without and with photocatalyst. When UV light was used in the presence of photocatalyst, 50 min was enough for quasi-total removal of RB5 with (0.2 M).
文摘The dye-sensitized TiO2 method is one of the most promising methods for the visible-light-induced detoxification of pollutants. The reaction mechanism for photocatalytic degradation of orange II (OII) and rhodamine B (RhB) with self-sensitized TiO2 under visible light irradiation (λ > 400 nm) has been evaluated. Radical scavenger studies were carried out to investigate the active species involved in the photodegradation of 5 mg/L of initial concentration of OII and RhB at room temperature. The trapping effects of different scavengers results proved that the oxidation of OII and RhB mainly occurred by the direct oxidization of h+ and ·O2- radicals, while the ·OH radicals played only a relatively minor role in the direct oxidization process.
文摘The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were better, compared with those obtained with bare TiO2 and Pt-doped TiO2. The effect of various experimental factors, such as photocatalytic dosage, temperature, solution pH and light intensity on the photocatalytic degradation of EDTA by Fe-doped TiO2 was investigated. The photocatalytic degradation treatment for the wastewater containing EDTA is simple, easy handling and low cost.
基金Funded by Yunnan Provincial Agricultural Joint Project (No.2018FG001-051)Yunnan Provincial Department of Education Research Fund (No. 2020Y0414)
文摘To promote the photocatalytic performance TiO2 and enlarge its application in visible region, carbon doped TiO2 (C/TiO2) composites were synthesized by wet impregnation method using sucrose as a precursor and used for phenol photocatalytic reaction. The synthesized products were characterized by Nitrogen adsorption-desorption isotherms (BET), X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible diffuse reflectance spectroscopy (UV-vis) techniques. The results showed that the obtained TiO2 was anatase phase in the C/TiO2 products, and its crystallite size was 11.7 nm, respectively. Carbon amount and calcined temperature of C/TiO2 can promote phenol removal. In this experiment, 5% carbon and 500 ℃ are the best choice for photocatalyst preparation. Under the UV light irradiation, 5%C/TiO2 (500 ℃, 2 h) exhibited the efficiency of 70.0% for phenol degradation within 150 min whereas TiO2 (500 ℃, 2 h) had 53.0% in the same duration of time. Also 5%C/TiO2 (500 ℃, 2 h) has higher photocatalytic performance under sunlight than pure TiO2. A combination of factors that include the smallest crystalline size, higher anatase percent, less band gap energy value and more oxygen vacant resulted in higher photocatalytic activities of 5%C/TiO2 (500 ℃, 2 h).
基金the Program for New Century Excellent Talents in University of China (NCET)the Science-Technology Project of Fujian Province (Grant Nos. 2005-I-030 and 2006Y0026)
文摘Photocatalytic degradation of dicofol was investigated on TiO2 nano particles (TiO2-NPs) under UV light irradiation. It was shown that dicofol could be completely degraded into inorganic chloride ion under the condition of 0.25 mg/mL TiO2-NPs, 2 h irradiation of 400 W high pressure mercury lamp with a wavelength of 365 nm and air at a rate of 100 mL/min. The effects of the experimental conditions, in-cluding the amount of TiO2-NPs, irradiation time and the intensity of light, were studied. The apparent photodegradation rate constant was 0.167/min under the optimal condition. The photocatalytic degra-dation mechanism of dicofol was also discussed.
基金Funded by Special Fund of Education Department of ShaanxiProvince(No.03JK144)
文摘( CdS/ TiO2 )/ MCM-41 loaded nanometer photocatalyst was prepared by the sol-gel method and dipping process, the photocatalytic degradation of methyl thionine chloride in water was investigated by using the photocatalyst. The experimental results show that the optimum concentration of CdS over TiO2 was 3% ( molar ratio ), the photocatalytic activity was enhanced when making TiO2 the anatase ptase with a rise of the roasting temperature, and the carrier, mesoporous molecular sieve MCM-41, was beneficial to improving the photocatalytic activity of TiO2 for photocatalytic degradation of methyl thionine chloride. The morphology and the crystalline phase of the photocatalyst were discussed by means of XRD and SEM techniques, and the reaction mechanism of catalytic properties was also discussed.
文摘Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SEM analyses revealed that the surface of the film did not exhibit cracks in the presence of TTIP as a binder in the TiO2 P25 suspension. The following parameters were studied in continuous mode operation: the flow rate in the reactor, the initial concentration of the paraquat, the pH of the solution, the weight of photocatalytic material with the number of foams in the reactor and the weight of the catalyst deposited onto the support. The results showed that by working under optimal operating conditions at natural pH (pH = 6.7), low paraquat (Co = 10 ppm), and flow (26 mL/min), we recorded approximately (43.16 ± 1.00)% oxidation of paraquat and a decrease in total organic carbon (TOC) of (27.13 ± 1.00)% after about 70 minutes. The apparent rate constant is in the order of (0.0656 ± 0.0010) min-1. In addition, by increasing the amount of β-SiC foams coated with TiO2, we improve the degradation of paraquat in the same order. The study of aging of the material showed its stability over time. However, photocatalytic activity was limited after 20 minutes of UV irradiation due to the limitation of the diffusion of the paraquat molecules towards the surface of the photocatalyst. As an outcome, we obtained an efficient TiO2/β-SiC material for photocatalytic degradation of organic compounds in water.
基金The National Natural Science Foundation of China (No.20371023)
文摘A new upconversion luminescence agent, 40CdF2·60BaF2·0.8ErO3, was synthesized and its fluorescent spectra were determined. This upconversion luminescence agent can emit five upconversion fluorescent peaks shown in the fluorescent spectra whose wavelengths are all below 387 nm under the excitation of 488 nm visible light. This upconversion luminescence agent was mixed into nano rutile TiO2 powder by ultrasonic and boiling dispersion and the novel doped nano TiO2 photocatalyst utilizing visible light was firstly prepared. The doped TiO2 powder was charactered by XRD and TEM and its photocatalytic activity was tested through the photocatalytic degradation of methyl orange as a model compound under the visible light irradiation emitted by six three basic color lamps. In order to compare the photocatalytic activities, the same experiment was carried out for undoped TiO2 powder. The degradation ratio of methyl orange in the presence of doped nano TiO2 powder reached 32.5% under visible light irradiation at 20 h which was obviously higher than the corresponding 1.64% in the presence of undoped nano TiO2 powder, which indicate the upconversion luminescence agent prepared as dopant can effectively turn visible lights to ultraviolet lights that are absorbed by nano TiO2 particles to produce the electron-cavity pairs. All the results show that the nano rutile TiO2 powder doped with upconversion luminescence agent is a promising photocatalyst using sunlight for treating the industry dye wastewater in great force.
文摘The photocatalytic degradation of phenol and 4-chlorophenol (4-CP) in aqueous suspensions with the use of titanium dioxide (TiO2 ) under UV irradiation was examined. The effects of different supporting materials mixed physically with TiO2 were studied to achieve maximum degradation efficiency. Among the three supports, namely activated carbon (AC), silica (SiO2 ) and zeolite (ZSM-5), all exhibited paramount efficiency for degradation of phenol and 4-CP and was better than TiO2 alone. The optimum concentration was found to be 50 mg for all supporting materials. The efficiency order of the three supports was as follows: AC 〉 ZSM-5 〉 SiO2 , respectively. Whilst, the degradation of phenol and 4-CP was improved from 70.6% to 87.6% and 80.6% to 89.7%, respectively, within 120 min photocatalysis in the presence of optimal amount of AC. The degradation was also comparatively enhanced in the presence of cheaper rice husk and the activity was closed to ZSM-5 and lower than AC.
基金Project supported by the National Natural Science Foundation of China (No. 20373074) the National Basic Research Programme (973) of China (No. 2003CB415006-3).
文摘The photocatalytic degradation of dye pollutant sulforhodamine-B (SRB) in aqueous titanium dioxide (TiO2) dispersions was examined under three lighting regimes: UV light (330 nm〈λ〈 380 nm), sunlight, and visible light (λ〉450 nm), all investigated at pH=2.5. Total organic carbon (TOC) and chemical oxygen demand (CODer) assays show that the degradation rate of SRB is much higher when irradiated with UV and sunlight compared with visible light. The temporal concentration changes of SRB illustrated a first-order reaction and the rate constant, k, is 0.197 min^-1, 0.152 min^-1, 0.027 min^-1, respectively, under the three lighting conditions. The final mineralized products were amine compounds identified by infrared spectrophotometry. When irradiated with visible light, the photocatalytic degradation rate could be improved by lowering the H2O2 concentration and inhibited by increasing the H2O2 concentration, but results contrary to the above were obtained when UV light was used for irradiation.
文摘Photocatalytic oxidation(PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO 2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO 2(i. e. pillar pellets ranging from 2 5 to 5 3 mm long and with a diameter of 3 7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor(FPR) and UV light source(blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO 2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO 2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO 2 powder. At least TiO 2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.
基金supported by the National Natural Science Foundation of China(31402137,51672312,21373275)Hubei Province Science Fund for Distinguished Yong Scholars(2013CFA034)+2 种基金the Program for Excellent Talents in Hubei Province(RCJH15001)the Science and Technology Program of Wuhan(2016010101010018)the Fundamental Research Funds for the Central University,South-Central University for Nationalities(CZP17077,CZP18016)~~
文摘Hierarchical TiO2 hollow nanoboxes(TiO2‐HNBs)assembled from TiO2 nanosheets(TiO2‐NSs)show improved photoreactivity when compared with the building blocks of discrete TiO2‐NSs.However,TiO2‐HNBs can only be excited by ultraviolet light.In this paper,visible‐light‐responsive N and S co‐doped TiO2‐HNBs were prepared by calcining the mixture of cubic TiOF2 and methionine(C5H11NO2S),a N‐and S‐containing biomacromolecule.The effect of calcination temperature on the structure and performance of the TiO2‐HNBs was systematically studied.It was found that methionine can prevent TiOF2‐to‐anatase TiO2 phase transformation.Both N and S elements are doped into the lattice of TiO2‐HNBs when the mixture of TiOF2 and methionine undergoes calcination at 400°C,which is responsible for the visible‐light response.When compared with that of pure 400°C‐calcined TiO2‐HNBs(T400),the photoreactivity of 400°C‐calcined methionine‐modified TiO2‐HNBs(TM400)improves 1.53 times in photocatalytic degradation of rhodamine‐B dye under visible irradiation(?>420 nm).The enhanced visible photoreactivity of methionine‐modified TiO2‐HNBs is also confirmed by photocatalytic oxidation of NO.The successful doping of N and S elements into the lattice of TiO2‐HNBs,resulting in the improved light‐harvesting ability and efficient separation of photo‐generated electron‐hole pairs,is responsible for the enhanced visible photocatalytic activity of methionine‐modified TiO2‐HNBs.The photoreactivity of methionine modified TiO2‐HNBs remains nearly unchanged even after being recycled five times,indicating its promising use in practical applications.
文摘An activated foam-structured carbon-ceramic(AFCC) was prepared and investigated as TiO2 support for the photocatalytic degradation of phenol. AFCC and TiO2/AFCC catalysts were characterized by N2 adsorption- desorption and X-ray diffraction(XRD). The effects of AFCC on the photocatalytic activity and the crystallinity of TiO2 were studied. The results show that the crystallinity and anatase/rutile ratio of TiO2 loaded on AFCC could be significantly influenced by the calcination temperature. The degradation rate of phenol benefited from the synergistic effects of the adsorption of activated carbon(AC) and the photocatalysis of TiO2, which suggests that a high surface area of AC is essential to achieve high degradation rates and efficiencies. It was found that the larger mean cell size of AFCC increased the lizht transmission within the foam.