Ischemic stroke(IS)represents a significant threat to brain health due to its elevated mortality and disability rates.The efficacy of small-molecule neuroprotective agents has been impeded by challenges associated wit...Ischemic stroke(IS)represents a significant threat to brain health due to its elevated mortality and disability rates.The efficacy of small-molecule neuroprotective agents has been impeded by challenges associated with traversing the blood-brain barrier(BBB)and limited bioavailability.Conversely,advanced nano drug delivery systems hold promise for overcoming these obstacles by facilitating efficient transportation across the BBB and maintaining optimal drug concentrations.This review aims to explore advanced neuroprotective nano drug delivery systems as a means of effectively administering neuroprotective agents to the brain using pharmaceutical approaches in the treatment of IS.By examining these systems,researchers and clinicians can gain valuable insights and innovative concepts,illuminating the potential of advanced neuroprotective nano drug delivery systems.Leveraging these advancements can drive the progress of pioneering and efficacious therapeutic interventions for IS.展开更多
Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinic...Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.展开更多
Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic ...Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver’s metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting.Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis;nevertheless,the working mechanism of anti-fibrotic medications is not fully understood,and there is a need to design delivery systems that are well-understood and can aid in cirrhosis.Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery.As a result,the capability of nanoparticles in hepatic delivery was explored.Another approach is targeted drug delivery,which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells(HSCs).We have addressed numerous delivery strategies that target HSCs,which can eventually aid in fibrosis.Recently genetics have proved to be useful,and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted.To summarize,this review paper sheds light on themost recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.展开更多
To design a new type of antitumor nanodrug carrier with good biocompatibility, a drug delivery system with a 2.19% drug-loading rate, measured by high-performance liquid chromatography(HPLC), was prepared by membrane ...To design a new type of antitumor nanodrug carrier with good biocompatibility, a drug delivery system with a 2.19% drug-loading rate, measured by high-performance liquid chromatography(HPLC), was prepared by membrane hydration using a mixed polymer: Pluronic■ F-127, which binds folic acid(FA), Pluronic■ F-68 and triptolide(TPL)(FA-F-127/F-68-TPL). As a control, another drug delivery system based on a single polymer(FA-F-127-TPL) with a 1.90% drug-loading rate was prepared by substituting F-68 with F-127. The average particle sizes of FA-F-127/F-68-TPL and FA-F-127-TPL measured by a particle size analyzer were 30.7 nm and 31.6 nm, respectively. Their morphology was observed by atomic force microscopy(AFM). The results showed that FA-F-127-TPL self-assembled into nanomicelles, whereas FA-F-127/F-68-TPL self-assembled into nanogels. An MTT assay showed that a very low concentration of FA-F-127/F-68-TPL or FA-F-127-TPL could significantly inhibit the proliferation of multidrug-resistant(MDR) breast cancer cells(MCF-7/ADR cells) and induce cell death. The effects were significantly different from those of free TPL(P < 0.01). Using the fluorescent probe Nile red(Nr) as the drug model, FA-F-127/F-68-Nr nanogels and FAF-127-Nr nanomicelles were prepared and then incubated with human hepatocarcinoma(HepG2) and MCF-7/ADR cells, and the fluorescence intensity in the cells was measured by a multifunctional microplate reader. The results indicated that both FA-F-127/F-68-Nr and FA-F-127-Nr had sustained release in the cells, but HepG2 and MCF-7/ADR cells exhibited significantly higher endocytosis of FA-F-127/F-68-Nr than that of FA-F-127-Nr(P < 0.01). A nude mice transplanted tumor model was prepared to monitor FA-F-127/F-68-Nr in the tumor tissue and organs by whole-body fluorescent imaging. The results showed that FA-F-127/F-68-Nr targeted tumor tissues. The prepared nanogels had small particle size, were easy to swallow, exhibited slow release property,targeted tumor cells, and could improve the antitumor effects of TPL;hence, they are ideal carriers for low-dose antineoplastic drugs.展开更多
Bone tumour is one of most common primary cancer which exhibits cancerous osteoblastic differentiation and malignant osteoid in patients.At present,chemotherapy(pre-and post-operative)is used as a standard treatment p...Bone tumour is one of most common primary cancer which exhibits cancerous osteoblastic differentiation and malignant osteoid in patients.At present,chemotherapy(pre-and post-operative)is used as a standard treatment protocol for bone tumour.However,drugs used in the treatment of bone tumour induce high toxicity to normal tissues including anaemia,neutropenia,thrombocytopenia,and heart damage which further reduce the survival rate of patients.Therefore,there is an urgent need to develop a new therapeutic approach for the treatment such that it induce maximum cell killing effect in tumor cells while sparing the healthy bone cells.In this article,some new perspectives were provided on the development of bone-targeted nano-drug carriers for bone cancer treatment.We hope such discussions wouldencourage more detailed and careful studies to support product development of bone-targeted drug carriers for bone cancer treatment.展开更多
In order to synthesize the targeting drug carrier system,magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil(5-Fu)as model drug,Fe3O4 nano-particles as kernel,chitosan as enveloping m...In order to synthesize the targeting drug carrier system,magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil(5-Fu)as model drug,Fe3O4 nano-particles as kernel,chitosan as enveloping material and glutaraldehyde as cross linking agent through ultrasonic technique.The morphology of the magnetic chitosan-5-Fu nano-particles was observed with a transmission electron microscope(TEM).The results showed that magnetic chitosan-5-Fu nano-particles were prepared in spherical structure with a size range of 50-60 nm.The delivering capacity and drug releasing properties of magnetic chitosan-5-Fu nano-particles were investigated by UV-vis spectrum analysis.The results showed that the loading capacity was 13.4%and the cumulative release percentage in the phosphate buffer(pH=7.2)solutions was 68%in 30 h.These data indicate that the wrapped drug of magnetic chitosan-5-Fu nano-particles was slowly-released.The magnetic response of magnetic chitosan-5-Fu nano-particles was studied by UV-vis spectrometer to detect the changes of solution absorbance.Without external magnetic field,the nano-particle deposition rate was slow.When being subjected to 8 mT magnetic field,the particle sedimentation rate was increased rapidly.The results showed that magnetic chitosan-5-Fu nano-particles have a magnetic stability and strong targeting characteristics.展开更多
Nano materials is a new type of drug carriers with very promising application. In recent years, great progress was achieved in making drugs own the characteristics of targeted and con-trolled release via nanotechnolog...Nano materials is a new type of drug carriers with very promising application. In recent years, great progress was achieved in making drugs own the characteristics of targeted and con-trolled release via nanotechnologies. This paper addressed the capability of nano drugs on tar-geting to cells, penetrating through epicyte, controlled release and the security issues re-sulting from its using. We gave the prospect of nano drugs in biology and medicine applying.展开更多
基金financial support provided by the National Natural Science Foundation of Shanghai(No.20ZR1420000)Shanghai Shen Kang Center Research Physician Training Program on Innovation and Translation Capabilities(No.SHDC2022CRS051)Three-Year Action Plan for Improving Clinical Research Capacity of International Peace Maternal and Child Health Hospital,Shanghai Jiao Tong University School of Medicine(No.IPMCH2022CR1-05).
文摘Ischemic stroke(IS)represents a significant threat to brain health due to its elevated mortality and disability rates.The efficacy of small-molecule neuroprotective agents has been impeded by challenges associated with traversing the blood-brain barrier(BBB)and limited bioavailability.Conversely,advanced nano drug delivery systems hold promise for overcoming these obstacles by facilitating efficient transportation across the BBB and maintaining optimal drug concentrations.This review aims to explore advanced neuroprotective nano drug delivery systems as a means of effectively administering neuroprotective agents to the brain using pharmaceutical approaches in the treatment of IS.By examining these systems,researchers and clinicians can gain valuable insights and innovative concepts,illuminating the potential of advanced neuroprotective nano drug delivery systems.Leveraging these advancements can drive the progress of pioneering and efficacious therapeutic interventions for IS.
基金financially supported by the National Natural Science Foundation of China(grant no.8217070298)Guangdong Basic and Applied Basic Research Foundation(grant no.2020A1515110770,2021A1515220011,2022A1515010335).
文摘Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
文摘Complications of the liver are amongst the world’s worst diseases.Liver fibrosis is the first stage of liver problems,while cirrhosis is the last stage,which can lead to death.The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver’s metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting.Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis;nevertheless,the working mechanism of anti-fibrotic medications is not fully understood,and there is a need to design delivery systems that are well-understood and can aid in cirrhosis.Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery.As a result,the capability of nanoparticles in hepatic delivery was explored.Another approach is targeted drug delivery,which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells(HSCs).We have addressed numerous delivery strategies that target HSCs,which can eventually aid in fibrosis.Recently genetics have proved to be useful,and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted.To summarize,this review paper sheds light on themost recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
基金Funded by the National Natural Science Foundation of Hubei Province(No.2014CFB306)the National Natural Science Foundation of China(No.51772233)+1 种基金the National Key Research and Development Program of China(No.2016YFC1101605)the Science and Technology Support Program of Hubei Province(No.2015BAA085)
文摘To design a new type of antitumor nanodrug carrier with good biocompatibility, a drug delivery system with a 2.19% drug-loading rate, measured by high-performance liquid chromatography(HPLC), was prepared by membrane hydration using a mixed polymer: Pluronic■ F-127, which binds folic acid(FA), Pluronic■ F-68 and triptolide(TPL)(FA-F-127/F-68-TPL). As a control, another drug delivery system based on a single polymer(FA-F-127-TPL) with a 1.90% drug-loading rate was prepared by substituting F-68 with F-127. The average particle sizes of FA-F-127/F-68-TPL and FA-F-127-TPL measured by a particle size analyzer were 30.7 nm and 31.6 nm, respectively. Their morphology was observed by atomic force microscopy(AFM). The results showed that FA-F-127-TPL self-assembled into nanomicelles, whereas FA-F-127/F-68-TPL self-assembled into nanogels. An MTT assay showed that a very low concentration of FA-F-127/F-68-TPL or FA-F-127-TPL could significantly inhibit the proliferation of multidrug-resistant(MDR) breast cancer cells(MCF-7/ADR cells) and induce cell death. The effects were significantly different from those of free TPL(P < 0.01). Using the fluorescent probe Nile red(Nr) as the drug model, FA-F-127/F-68-Nr nanogels and FAF-127-Nr nanomicelles were prepared and then incubated with human hepatocarcinoma(HepG2) and MCF-7/ADR cells, and the fluorescence intensity in the cells was measured by a multifunctional microplate reader. The results indicated that both FA-F-127/F-68-Nr and FA-F-127-Nr had sustained release in the cells, but HepG2 and MCF-7/ADR cells exhibited significantly higher endocytosis of FA-F-127/F-68-Nr than that of FA-F-127-Nr(P < 0.01). A nude mice transplanted tumor model was prepared to monitor FA-F-127/F-68-Nr in the tumor tissue and organs by whole-body fluorescent imaging. The results showed that FA-F-127/F-68-Nr targeted tumor tissues. The prepared nanogels had small particle size, were easy to swallow, exhibited slow release property,targeted tumor cells, and could improve the antitumor effects of TPL;hence, they are ideal carriers for low-dose antineoplastic drugs.
基金The project supported by National Natural Science Foundation of China(81300964)the China Postdoctoral Science Foundation(2013M531611,2014T70648)
文摘Bone tumour is one of most common primary cancer which exhibits cancerous osteoblastic differentiation and malignant osteoid in patients.At present,chemotherapy(pre-and post-operative)is used as a standard treatment protocol for bone tumour.However,drugs used in the treatment of bone tumour induce high toxicity to normal tissues including anaemia,neutropenia,thrombocytopenia,and heart damage which further reduce the survival rate of patients.Therefore,there is an urgent need to develop a new therapeutic approach for the treatment such that it induce maximum cell killing effect in tumor cells while sparing the healthy bone cells.In this article,some new perspectives were provided on the development of bone-targeted nano-drug carriers for bone cancer treatment.We hope such discussions wouldencourage more detailed and careful studies to support product development of bone-targeted drug carriers for bone cancer treatment.
基金Projects(30572455,30670990)supported by the National Natural Science Foundation of ChinaProject(20060390891)supported by Postdoctor Foundation of China+1 种基金Project(NCET-06-0685)supported by the Program of New Century Excellent Talent in University of Ministry of Education of ChinaProject(2006FJ4243)supported by Science and Technology of Hunan Province,China
文摘In order to synthesize the targeting drug carrier system,magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil(5-Fu)as model drug,Fe3O4 nano-particles as kernel,chitosan as enveloping material and glutaraldehyde as cross linking agent through ultrasonic technique.The morphology of the magnetic chitosan-5-Fu nano-particles was observed with a transmission electron microscope(TEM).The results showed that magnetic chitosan-5-Fu nano-particles were prepared in spherical structure with a size range of 50-60 nm.The delivering capacity and drug releasing properties of magnetic chitosan-5-Fu nano-particles were investigated by UV-vis spectrum analysis.The results showed that the loading capacity was 13.4%and the cumulative release percentage in the phosphate buffer(pH=7.2)solutions was 68%in 30 h.These data indicate that the wrapped drug of magnetic chitosan-5-Fu nano-particles was slowly-released.The magnetic response of magnetic chitosan-5-Fu nano-particles was studied by UV-vis spectrometer to detect the changes of solution absorbance.Without external magnetic field,the nano-particle deposition rate was slow.When being subjected to 8 mT magnetic field,the particle sedimentation rate was increased rapidly.The results showed that magnetic chitosan-5-Fu nano-particles have a magnetic stability and strong targeting characteristics.
文摘Nano materials is a new type of drug carriers with very promising application. In recent years, great progress was achieved in making drugs own the characteristics of targeted and con-trolled release via nanotechnologies. This paper addressed the capability of nano drugs on tar-geting to cells, penetrating through epicyte, controlled release and the security issues re-sulting from its using. We gave the prospect of nano drugs in biology and medicine applying.