Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in mo...Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress.展开更多
Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions...Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.展开更多
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie...This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.展开更多
The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI...The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.展开更多
Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide e...Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage.Herein,the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes(Fe_(7)S_(8)/FeS_(2)/NCNT)have been prepared through a successive pyrolysis and sulfidation approach.The Fe_(7)S_(8)/FeS_(2)/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g^(−1) up to 100 cycles at 1.0 A g^(−1) and superior rate capability(273.4 mAh g^(−1) at 20.0 A g^(−1))in ester-based electrolyte.Meanwhile,the electrodes also demonstrated long-term cycling stability(466.7 mAh g^(−1) after 1,000 cycles at 5.0 A g^(−1))and outstanding rate capability(536.5 mAh g^(−1) at 20.0 A g^(−1))in ether-based electrolyte.This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics,high capacitive contribution,and convenient interfacial dynamics in ether-based electrolyte.展开更多
Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,c...Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.展开更多
The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate c...The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate change.Optical absorption and Raman spectroscopic measurements were carried out on two natural carbonate samples in diamond-anvil cells up to 60 GPa.Mg-substitution in high-spin siderite FeCO_(3)increases the crystal field absorption band position by approximately 1000 cm^(-1),but such an effect is marginal at>40 GPa when entering the low-spin state.The crystal field absorption band of dolomite cannot be recognized upon compression to 45.8 GPa at room temperature but,in contrast,the high-pressure polymorph of dolomite exhibits a strong absorption band at frequencies higher than(Mg,Fe)CO_(3)in the lowspin state by 2000–2500 cm^(-1).Additionally,these carbonate minerals show more complicated features for the absorption edge,decreasing with pressure and undergoing a dramatic change through the spin crossover.The optical and vibrational properties of carbonate minerals are highly correlated with iron content and spin transition,indicating that iron is preferentially partitioned into low-spin carbonates.These results shed new light on how carbonate minerals evolve in the mantle,which is crucial to decode the deep carbon cycle.展开更多
Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted ...Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO_2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L-(g·h)-1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promot- ed with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn pro- moter stabilized wtistite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammo- nia (NH_3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions.展开更多
The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM...The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM and SEM.Results showed that the microstructure of as-cast ductile iron was composed of spheroidal graphite,ferrite with the volume of 80%,and a small amount of pearlite,and quenched ductile iron was composed of spheroidal graphite,coarse/fine acicular martensite(α_(M)phase)and high-carbon retained austenite(γphase).The volume fraction of retained austensite and its carbon content for direct quenched ductile iron and tepmered ductile iron were quantitatively analysed by XRD.Results revealed that carbon atoms diffused fromα_(M)phase toγphase during tempering at low temperatures,which resulted in carbon content in retainedγphase increasing from 1.2 wt%for the direct quenched sample to about 1.9 wt%for the tempered samples.Consequently,the lattice distortion was significantly reduced and gave rise to an increase of thermal conductivity for ductile iron.展开更多
The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex...The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex- plore efficient and sustainable approaches for the carbon-neutral pathway of CO2 utilization and recycling. In our recent works with this context, we developed successfully a novel "chemical vapor deposition integrated process (CVD-IP)" technology to converting robustly CO2 into the value-added solid-form carbon materials, The monometallic FeNi0-Al2O3 (FNi0) and bimetallic FeNix-Al2O3 (FNi2, FNi4, FNi8 and FNi20) samples were synthesized and effective for this new approach. The catalyst labeled FNi8 gave the better performance, exhibited the single pass solid carbon yield of 30%. These results illustrated alternative promising cases for the CO2 capture utilization storage (CCUS), by means of the CO2 catalytic conversion into the solid-form nano carbon materials.展开更多
Combustion within small motors is key in the application-specific development of nanothermite-based micro-energetic systems. This study evaluates the performance of nanothermite mixtures in a converging-diverging nozz...Combustion within small motors is key in the application-specific development of nanothermite-based micro-energetic systems. This study evaluates the performance of nanothermite mixtures in a converging-diverging nozzle and an open tube. Mixtures were prepared using nano-aluminum(n-Al),potassium perchlorate(KClO_(4)), and different carbon nanomaterials(CNMs) including graphene-oxide(GO), reduced GO, carbon nanotubes(CNTs) and nanofibers(CNFs). The mixtures were packed at different densities and ignited by laser beam. Performance was measured using thrust measurement,high-speed imaging, and computational fluid dynamics modeling, respectively. Thrust, specific impulse(ISP), volumetric impulse(ISV), as well as normalized energy were found to increase notably with CNM content. Two distinctive reaction regimes(fast and slow) were observed in combustion of low and high packing densities(20% and 55%TMD), respectively. Total impulse(IFT) and ISPwere maximized in the 5%GO/Al/KClO_4 mixture, producing 7.95 m N·s and 135.20 s respectively at 20%TMD, an improvement of 57%compared to a GO-free sample(5.05 m N·s and 85.88 s). CFD analysis of the motors over predicts the thrust generated but trends in nozzle layout and packing density agree with those observed experimentally;peak force was maximized by reducing packing density and using an open tube. The numerical force profiles fit better for the nozzle cases than the open tube scenarios due to the rapid nature of combustion. This study reveals the potential of GO in improving oxygenated salt-based nanothermites,and further demonstrates their applicability for micro-propulsion and micro-energetic applications.展开更多
K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the dire...K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Its catalytic behaviors were compared with those of the other two Fe-IM and Fe K-IM catalysts prepared by impregnation method followed by thermal treatments. The novel Fe K-OX composite catalyst is found to exhibit higher hydrocarbon selectivity,lower olefins selectivity and chain growth probability as well as better stability. The catalyst structureperformance relationship has been established using multiple techniques including XRD, Raman, TEM and EDS elemental mapping. In addition, effects of additional potassium into the Fe K-OX composite catalyst on the FTO performance were also investigated and discussed. Additional potassium promoters further endow the catalysts with higher yield of lower olefins. These results demonstrated that the introduction method of promoters and iron species plays a crucial role in the design and fabrication of highly active,selective and stable iron-based composite catalysts for the FTO reaction.展开更多
Simazine and propazine are selective triazine herbicides currently in use to control broad-leaved weeds and annual grasses around the world. Bisphenol A (BPA) is an industrial chemical used in the production of polyca...Simazine and propazine are selective triazine herbicides currently in use to control broad-leaved weeds and annual grasses around the world. Bisphenol A (BPA) is an industrial chemical used in the production of polycarbonate plastics often found in consumer goods, such as plastic containers, baby bottles etc. These synthetic compounds are known to increase the risk of cancer, cause adverse reproductive effect in reptiles, mammals, birds, humans, and lead to other health problems. They have become some of the principal agents of contamination in water bodies around the world through herbicide runoff, industrial waste and leaching. Some triazines such as atrazine are banned in most European countries for over ten years due to their adverse reproductive effect in mammals, birds and humans;however propazine and simazine are still in use around the world. The removal of these compounds from contaminated water is an exigent challenge. In this study, we investigated their affinity for the surface of nanoparticles (NPS) and standard metallic oxides in an effort to exploit the unique potential applications of NPS for water purification systems. We studied the adsorption of the two triazines and BPA on the surface of NPS of iron (III) oxide, NPS of carbon, bulk iron (III) oxide and aluminum oxide at pH 6 and pH 8 using UV-Visible spectroscopy. Result indicates that these compounds have different affinity towards the surface of metallic oxides and carbon at various pHs. In general, there is relatively high adsorption of some of these compounds on the surface of NPS compared to bulk particles. NPS of carbon have shown the highest affinity for all the three compounds. The lower pH was found to be favorable for all of the compounds except for BPA. BPA have shown high adsorption at pH 8 than at pH 6.展开更多
Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phtha...Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.展开更多
This paper presents the preparation of carbon conditioned with iron nanoparticles (CI) using a pineapple peel treated with iron salts, carboxymethylcellulose sodium and hexamine. First, the pineapple peel was analyzed...This paper presents the preparation of carbon conditioned with iron nanoparticles (CI) using a pineapple peel treated with iron salts, carboxymethylcellulose sodium and hexamine. First, the pineapple peel was analyzed by thermo gravimetric analysis (TGA) to determine the optimal temperature for pyrolysis. The formation of carbon conditioned by iron nanoparticles was studied as a function of time at 30 min, 60 min, 90 min, 120 min, 150 min and 180 min. Scanning electron microscopy (SEM) was used to identify changes in the morphology of the materials. The specific area of each material was obtained by the BET method. The elemental composition of pineapple-peel (PP), washed pineapple-peel (WPP) and carbon iron (CI), was determined by neutron activation analysis (NAA). The results show that the optimal time for obtaining spherical iron nanoparticles with a diameter between 10 nm and 30 nm is 180 min on the carbonaceous material with a specific surface area of 167 m2/g.展开更多
Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution tr...Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5-5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24. 7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (Ms) and coercivity (Hc) of the product B are 107.4 emu/g and 143 Oe. resnectivelv. The formation of the CEINPs in the oroduct B is discussed briefly.展开更多
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy c...Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.展开更多
The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated b...The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and A1203), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an alactrie a.re furnace to rer)la,ce scrar) steel.展开更多
In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron micr...In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron microscopy with electron-backscatter diffraction. The results showed that the efficiency of decarburization dramatically increased with increasing decarburization temperature. However,when the annealing temperature was increased to 825°C and 850°C,the steel's carbon content remained essentially unchanged at 0.002%. With increasing decarburization time,the steel's carbon content generally decreased. When both the decarburization temperature and time were increased further,the average grain size dramatically increased and the number of fine grains decreased; meanwhile,some relatively larger grains developed. The main texture types of the decarburized sheets were approximately the same: {001}<110> and {112~115}<110>,with a γ-fiber texture. Furthermore,little change was observed in the texture. Compared with the experimental sheets,the texture of the cold-rolled sheet was very scattered. The best average magnetic induction(B_(800)) among the final products was 1.946 T.展开更多
基金Open Project of Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake,Grant Number HZHLAB2201.
文摘Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress.
基金supported by the National Key Research and Development Program of China(2019YFC1904800)the National Natural Science Foundation of China(72274105).
文摘Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.
文摘This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.
基金financially supported by the Natural Science Foundation China (No.52274343)the Youth Natural Science Foundation China (No.51904347)the China Baowu Low Carbon Metallurgy Innovation Foundation (No.BWLCF202102)。
文摘The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.
基金support by the National Natural Science Foundation of China(G.No.22102141).
文摘Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage.Herein,the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes(Fe_(7)S_(8)/FeS_(2)/NCNT)have been prepared through a successive pyrolysis and sulfidation approach.The Fe_(7)S_(8)/FeS_(2)/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g^(−1) up to 100 cycles at 1.0 A g^(−1) and superior rate capability(273.4 mAh g^(−1) at 20.0 A g^(−1))in ester-based electrolyte.Meanwhile,the electrodes also demonstrated long-term cycling stability(466.7 mAh g^(−1) after 1,000 cycles at 5.0 A g^(−1))and outstanding rate capability(536.5 mAh g^(−1) at 20.0 A g^(−1))in ether-based electrolyte.This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics,high capacitive contribution,and convenient interfacial dynamics in ether-based electrolyte.
基金support by the National Natural Science Foundation of China(51802269,21773138)Fundamental Research Funds for the Central Universities(XDJK2019AA002)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2018027)the innovation platform for academicians of Hainan province.
文摘Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0708502)。
文摘The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate change.Optical absorption and Raman spectroscopic measurements were carried out on two natural carbonate samples in diamond-anvil cells up to 60 GPa.Mg-substitution in high-spin siderite FeCO_(3)increases the crystal field absorption band position by approximately 1000 cm^(-1),but such an effect is marginal at>40 GPa when entering the low-spin state.The crystal field absorption band of dolomite cannot be recognized upon compression to 45.8 GPa at room temperature but,in contrast,the high-pressure polymorph of dolomite exhibits a strong absorption band at frequencies higher than(Mg,Fe)CO_(3)in the lowspin state by 2000–2500 cm^(-1).Additionally,these carbonate minerals show more complicated features for the absorption edge,decreasing with pressure and undergoing a dramatic change through the spin crossover.The optical and vibrational properties of carbonate minerals are highly correlated with iron content and spin transition,indicating that iron is preferentially partitioned into low-spin carbonates.These results shed new light on how carbonate minerals evolve in the mantle,which is crucial to decode the deep carbon cycle.
基金supported by the Synchrotron Light Research Institute(Public Organization)Thailand(GS-54-D01)+7 种基金the Commission on Higher EducationMinistry of EducationThailandperformed under the project"Sustainable Chemical Synthesis(Sus Chem Sys)"which is co-financed by the European Regional Development Fund(ERDF)the state of North Rhine-WestphaliaGermanyunder the Operational Programme"Regional Competitiveness and Employment"2007–2013
文摘Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in car- bon dioxide (CO_2) hydrogenation at 633 K and 25 bar (1 bar = 10-5 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO_2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L-(g·h)-1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promot- ed with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn pro- moter stabilized wtistite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammo- nia (NH_3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions.
基金Funded by China Postdoctoral Science Foundation(Nos.2019M653703 and 2020T130523)Xi’an University of Technology Youth Nova Fund(No.101-451320005)。
文摘The effects of carbon distribution on the microstructure and thermal conductivity of ductile iron were investigated in the present study.The microstructure of as-cast and quenched ductile iron were characterized by OM and SEM.Results showed that the microstructure of as-cast ductile iron was composed of spheroidal graphite,ferrite with the volume of 80%,and a small amount of pearlite,and quenched ductile iron was composed of spheroidal graphite,coarse/fine acicular martensite(α_(M)phase)and high-carbon retained austenite(γphase).The volume fraction of retained austensite and its carbon content for direct quenched ductile iron and tepmered ductile iron were quantitatively analysed by XRD.Results revealed that carbon atoms diffused fromα_(M)phase toγphase during tempering at low temperatures,which resulted in carbon content in retainedγphase increasing from 1.2 wt%for the direct quenched sample to about 1.9 wt%for the tempered samples.Consequently,the lattice distortion was significantly reduced and gave rise to an increase of thermal conductivity for ductile iron.
基金support for this project from the National Natural Science Foundation of China (21476145)the National 973 Program of Ministry of Sciences and Technologies of China (2011CB201202)
文摘The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex- plore efficient and sustainable approaches for the carbon-neutral pathway of CO2 utilization and recycling. In our recent works with this context, we developed successfully a novel "chemical vapor deposition integrated process (CVD-IP)" technology to converting robustly CO2 into the value-added solid-form carbon materials, The monometallic FeNi0-Al2O3 (FNi0) and bimetallic FeNix-Al2O3 (FNi2, FNi4, FNi8 and FNi20) samples were synthesized and effective for this new approach. The catalyst labeled FNi8 gave the better performance, exhibited the single pass solid carbon yield of 30%. These results illustrated alternative promising cases for the CO2 capture utilization storage (CCUS), by means of the CO2 catalytic conversion into the solid-form nano carbon materials.
基金financial funding from the Egyptian governmentthe financial funding from the NSERC Discovery grant。
文摘Combustion within small motors is key in the application-specific development of nanothermite-based micro-energetic systems. This study evaluates the performance of nanothermite mixtures in a converging-diverging nozzle and an open tube. Mixtures were prepared using nano-aluminum(n-Al),potassium perchlorate(KClO_(4)), and different carbon nanomaterials(CNMs) including graphene-oxide(GO), reduced GO, carbon nanotubes(CNTs) and nanofibers(CNFs). The mixtures were packed at different densities and ignited by laser beam. Performance was measured using thrust measurement,high-speed imaging, and computational fluid dynamics modeling, respectively. Thrust, specific impulse(ISP), volumetric impulse(ISV), as well as normalized energy were found to increase notably with CNM content. Two distinctive reaction regimes(fast and slow) were observed in combustion of low and high packing densities(20% and 55%TMD), respectively. Total impulse(IFT) and ISPwere maximized in the 5%GO/Al/KClO_4 mixture, producing 7.95 m N·s and 135.20 s respectively at 20%TMD, an improvement of 57%compared to a GO-free sample(5.05 m N·s and 85.88 s). CFD analysis of the motors over predicts the thrust generated but trends in nozzle layout and packing density agree with those observed experimentally;peak force was maximized by reducing packing density and using an open tube. The numerical force profiles fit better for the nozzle cases than the open tube scenarios due to the rapid nature of combustion. This study reveals the potential of GO in improving oxygenated salt-based nanothermites,and further demonstrates their applicability for micro-propulsion and micro-energetic applications.
基金supported by the China Scholarship Council (CSC) for the research at Norwegian University of Science and Technologysupported by the Natural Science Foundation of China (21306046)+2 种基金the Open Project of State Key Laboratory of Chemical Engineering (SKL-Che-15C03)the Fundamental Research Funds for the Central Universities (WA1514013)the 111 Project of Ministry of Education of China (B08021)
文摘K-promoted iron/carbon nanotubes composite(i.e., Fe K-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4followed by thermal treatments on a purpose as the Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Its catalytic behaviors were compared with those of the other two Fe-IM and Fe K-IM catalysts prepared by impregnation method followed by thermal treatments. The novel Fe K-OX composite catalyst is found to exhibit higher hydrocarbon selectivity,lower olefins selectivity and chain growth probability as well as better stability. The catalyst structureperformance relationship has been established using multiple techniques including XRD, Raman, TEM and EDS elemental mapping. In addition, effects of additional potassium into the Fe K-OX composite catalyst on the FTO performance were also investigated and discussed. Additional potassium promoters further endow the catalysts with higher yield of lower olefins. These results demonstrated that the introduction method of promoters and iron species plays a crucial role in the design and fabrication of highly active,selective and stable iron-based composite catalysts for the FTO reaction.
文摘Simazine and propazine are selective triazine herbicides currently in use to control broad-leaved weeds and annual grasses around the world. Bisphenol A (BPA) is an industrial chemical used in the production of polycarbonate plastics often found in consumer goods, such as plastic containers, baby bottles etc. These synthetic compounds are known to increase the risk of cancer, cause adverse reproductive effect in reptiles, mammals, birds, humans, and lead to other health problems. They have become some of the principal agents of contamination in water bodies around the world through herbicide runoff, industrial waste and leaching. Some triazines such as atrazine are banned in most European countries for over ten years due to their adverse reproductive effect in mammals, birds and humans;however propazine and simazine are still in use around the world. The removal of these compounds from contaminated water is an exigent challenge. In this study, we investigated their affinity for the surface of nanoparticles (NPS) and standard metallic oxides in an effort to exploit the unique potential applications of NPS for water purification systems. We studied the adsorption of the two triazines and BPA on the surface of NPS of iron (III) oxide, NPS of carbon, bulk iron (III) oxide and aluminum oxide at pH 6 and pH 8 using UV-Visible spectroscopy. Result indicates that these compounds have different affinity towards the surface of metallic oxides and carbon at various pHs. In general, there is relatively high adsorption of some of these compounds on the surface of NPS compared to bulk particles. NPS of carbon have shown the highest affinity for all the three compounds. The lower pH was found to be favorable for all of the compounds except for BPA. BPA have shown high adsorption at pH 8 than at pH 6.
基金supported by the National Defense Science and Technology Innovation Zone Project (Nos. 17H863-05-ZT-002-040-001 and 18-H863-05-ZT-002-01301
文摘Improving the performance of anode is a crucial step for increasing output power of marine sediment microbial fuel cells(MSMFCs)to drive marine monitor to work for a long term on the ocean floor.A pyrolyzed iron phthalocyanine modified multi-walled carbon nanotubes composite(FePc/MWCNTs)has been utilized as a novel nodified anode in the MSMFC.Its structure of the composite modified anode and electrochemical performance have been investigated respectively in the paper.There is a substantial improvement in electron-transfer efficiency from the bacteria biofilm to the modified anode via the pyrolyzed FePc/MWCNTs composite based on their cyclic voltammetry(CV)and Tafel curves.The electron transfer kinetic activity of the FePc/MWCNTs-modified anode is 1.86 times higher than of the unmodified anode.The maximum power density of the modified MSMFC was 572.3±14 m W m^-2,which is 2.6 times larger than the unmodified one(218.3±11 m W m^-2).The anodic structure and cell scale would be greatly minimized to obtain the same output power by the modified MSMFC,so that it will make the MSMFC to be easily deployed on the remote ocean floor.Therefore,it would have a great significance for us to design a novel and renewable long term power source.Finally,a novel molecular synergetic mechanism is proposed to elucidate its excellent electrochemical performance.
文摘This paper presents the preparation of carbon conditioned with iron nanoparticles (CI) using a pineapple peel treated with iron salts, carboxymethylcellulose sodium and hexamine. First, the pineapple peel was analyzed by thermo gravimetric analysis (TGA) to determine the optimal temperature for pyrolysis. The formation of carbon conditioned by iron nanoparticles was studied as a function of time at 30 min, 60 min, 90 min, 120 min, 150 min and 180 min. Scanning electron microscopy (SEM) was used to identify changes in the morphology of the materials. The specific area of each material was obtained by the BET method. The elemental composition of pineapple-peel (PP), washed pineapple-peel (WPP) and carbon iron (CI), was determined by neutron activation analysis (NAA). The results show that the optimal time for obtaining spherical iron nanoparticles with a diameter between 10 nm and 30 nm is 180 min on the carbonaceous material with a specific surface area of 167 m2/g.
文摘Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5-5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24. 7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (Ms) and coercivity (Hc) of the product B are 107.4 emu/g and 143 Oe. resnectivelv. The formation of the CEINPs in the oroduct B is discussed briefly.
基金supported by the National Natural Science Foundation of China(51272173,51002188)the National Basic Research Program of China(2010CB934703)Tianjin Municipal Science and Technology Commission(12ZCZDGX00800)
文摘Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.
基金support by China Scholarship Council(No.201206370127)support from CSIRO,Australia
文摘The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and A1203), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an alactrie a.re furnace to rer)la,ce scrar) steel.
文摘In this study,the effect of decarburization annealing temperature and time on the carbon content,microstructure,and texture of grain-oriented pure iron was investigated by optical microscopy and scanning electron microscopy with electron-backscatter diffraction. The results showed that the efficiency of decarburization dramatically increased with increasing decarburization temperature. However,when the annealing temperature was increased to 825°C and 850°C,the steel's carbon content remained essentially unchanged at 0.002%. With increasing decarburization time,the steel's carbon content generally decreased. When both the decarburization temperature and time were increased further,the average grain size dramatically increased and the number of fine grains decreased; meanwhile,some relatively larger grains developed. The main texture types of the decarburized sheets were approximately the same: {001}<110> and {112~115}<110>,with a γ-fiber texture. Furthermore,little change was observed in the texture. Compared with the experimental sheets,the texture of the cold-rolled sheet was very scattered. The best average magnetic induction(B_(800)) among the final products was 1.946 T.