Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene be...Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene bearing di-[N-(X)sulfonyl carboxamide] and di-(1-propoxy) in ortho-cone conformation was synthesized and used. The related parameters including ligand concentration, the volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit(S/N=3) and precision(RSD, n=6) were determined to be 0.2―50, 0.07 μg/L and 5.3%, respectively. The results reveal that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems.展开更多
Magnetic Fe3O4 nanoparticles were synthesized via the coprecipitation of ferrous and ferric ion. The morphology and magnetic properties of the magnetic Fe3O4 nanoparticles were investigated by transmission electron mi...Magnetic Fe3O4 nanoparticles were synthesized via the coprecipitation of ferrous and ferric ion. The morphology and magnetic properties of the magnetic Fe3O4 nanoparticles were investigated by transmission electron microscopy(TEM) and superconducting quantum interference device. Furthermore, the Fe3O4-porphyrin nanocompo- site particles(FeOPNCPs) are prepared with Fe3O4 and porphyrin by sol-gel method. The patterns of FeOPNCPs were also characterized by means of scanning electron microscopy(SEM) and TEM. The optical and magnetic properties of FeOPNCPs were investigated on a UV-Vis spectrophotometer, a fluorescence spectrophotometer and a supercon- ducting quantum interference device. These experimental results show that FeOPNCPs not only possess optical features of porphvrin but also retain the superoaramagnetic features of Fe3O4 nanoparticles.展开更多
基金Supported by the Islamic Azad University(Shahreza Branch)the Iran Nanotechnology Initiative Council
文摘Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene bearing di-[N-(X)sulfonyl carboxamide] and di-(1-propoxy) in ortho-cone conformation was synthesized and used. The related parameters including ligand concentration, the volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit(S/N=3) and precision(RSD, n=6) were determined to be 0.2―50, 0.07 μg/L and 5.3%, respectively. The results reveal that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems.
基金Supported by the Fundamental Research Funds from the Central Universities of China, the Natural Scientific Research Innovation Foundation of Harbin Institute of Technology, China(Nos.HIT.IBRSEM.2009.003, HIT.ICRST.2010012), the Ministry of Science and Technology International Cooperation Project, China(No.2012DFR30220) and the National Natural Science Foundation of China(No. 514070467).
文摘Magnetic Fe3O4 nanoparticles were synthesized via the coprecipitation of ferrous and ferric ion. The morphology and magnetic properties of the magnetic Fe3O4 nanoparticles were investigated by transmission electron microscopy(TEM) and superconducting quantum interference device. Furthermore, the Fe3O4-porphyrin nanocompo- site particles(FeOPNCPs) are prepared with Fe3O4 and porphyrin by sol-gel method. The patterns of FeOPNCPs were also characterized by means of scanning electron microscopy(SEM) and TEM. The optical and magnetic properties of FeOPNCPs were investigated on a UV-Vis spectrophotometer, a fluorescence spectrophotometer and a supercon- ducting quantum interference device. These experimental results show that FeOPNCPs not only possess optical features of porphvrin but also retain the superoaramagnetic features of Fe3O4 nanoparticles.