The influence of the precipitating reagents and dispersants on the formation of nano-aluminum hydroxide from sodium aluminate solution by chemical precipitation was investigated. The influence of the dispersed seeds o...The influence of the precipitating reagents and dispersants on the formation of nano-aluminum hydroxide from sodium aluminate solution by chemical precipitation was investigated. The influence of the dispersed seeds on the decomposi-tion process was investigated too. The alkaline aluminate solutions were used as original solutions with a concentration of Al2O3 having 14.78 g/dm3, αk—1.6 and127 g/dm3, αk—1.6. For the precipitation processes there were used follow-ing precipitating reagents—solutions HCl, NaHCO3 and NH4HCO3 with a concentration of 80 g/dm3, dispersants—PEG 6000, (NaPO3)6 and Tween 20. For the decomposition process the dispersed seeds and factories seeds were used. Structural studies of the aluminum hydroxide particles were carried out by means of the electron-probe microanalysis and scanning electron microscopy, and phase composition of products was determined by means of X-ray diffraction analysis. Ammonium bicarbonate and Tween 20 were determined as the optimal precipitating reagent and dispersant, correspondingly, resulting in dispersed aluminum hydroxide, which is used as a seed in the decomposition process. It was established that this product in form of dispersed seed considerably reduces the duration of the decomposition process;the maximal decomposition of solution (73.9%) was observed after injection of dispersеd aluminum hydroxide into solution. The final aluminum hydroxide having 90% of particles less than 100 nanometers was obtained within 7 hours of steady decreasing temperature from 70°C to 48°C.展开更多
Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With th...Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With this method, the thickness of the coating layer and the functional group contents on the nano-beads could be controlled by changing the quantity of the coated monomers. The nanobeads were characterized by means of transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR). The carboxyl-modified magnetic nano-beads were employed to streamline the protocol of isolation of genomic DNA from the human whole blood.展开更多
文摘The influence of the precipitating reagents and dispersants on the formation of nano-aluminum hydroxide from sodium aluminate solution by chemical precipitation was investigated. The influence of the dispersed seeds on the decomposi-tion process was investigated too. The alkaline aluminate solutions were used as original solutions with a concentration of Al2O3 having 14.78 g/dm3, αk—1.6 and127 g/dm3, αk—1.6. For the precipitation processes there were used follow-ing precipitating reagents—solutions HCl, NaHCO3 and NH4HCO3 with a concentration of 80 g/dm3, dispersants—PEG 6000, (NaPO3)6 and Tween 20. For the decomposition process the dispersed seeds and factories seeds were used. Structural studies of the aluminum hydroxide particles were carried out by means of the electron-probe microanalysis and scanning electron microscopy, and phase composition of products was determined by means of X-ray diffraction analysis. Ammonium bicarbonate and Tween 20 were determined as the optimal precipitating reagent and dispersant, correspondingly, resulting in dispersed aluminum hydroxide, which is used as a seed in the decomposition process. It was established that this product in form of dispersed seed considerably reduces the duration of the decomposition process;the maximal decomposition of solution (73.9%) was observed after injection of dispersеd aluminum hydroxide into solution. The final aluminum hydroxide having 90% of particles less than 100 nanometers was obtained within 7 hours of steady decreasing temperature from 70°C to 48°C.
文摘Unique coupling reagent, bis-(2-hydroxyethyl methacrylate) phosphate was used to prepare coated and functionalized superparamagnetic nanobeads, leading to a simple, effective method for coating the nanobeads. With this method, the thickness of the coating layer and the functional group contents on the nano-beads could be controlled by changing the quantity of the coated monomers. The nanobeads were characterized by means of transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR). The carboxyl-modified magnetic nano-beads were employed to streamline the protocol of isolation of genomic DNA from the human whole blood.