WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi...WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.展开更多
Carbon spheres with size of 50-300 nm were synthesized via a solvent-thermal reaction with calcium carbide and chloroform as reactants in a sealed autoclave.The morphologies and microstructures of carbon spheres befor...Carbon spheres with size of 50-300 nm were synthesized via a solvent-thermal reaction with calcium carbide and chloroform as reactants in a sealed autoclave.The morphologies and microstructures of carbon spheres before and after high temperature treatment(HTT) were characterized by X-ray diffractometry(XRD) ,scanning electronic microscopy(SEM) ,energy diffraction spectroscopy(EDS) ,and transmission electron microscopy(TEM) .The formation mechanism of carbon spheres was discussed.The results indicate that the carbon spheres convert to hollow polyhedron through HTT.Carbon spheres are composed of entangled and curve graphitic layers with short range order similar to cotton structure,and carbon polyhedron with dimension of 50-250 nm and shell thickness of 15-30 nm.The change of solid spheres to hollow polyhedron with branches gives a new evidence for formation mechanism of hollow carbon spheres.展开更多
TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron micros...TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.展开更多
Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scann...Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and potentiodynamic polarization methods. It has been found that by increasing the acetic acid/CeCl3·7H2O molar ratio, high uniform and crack-free films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.展开更多
In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that ...In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that there existed black-core grayish-rim strucmre as well as gray-core grayish-rim structure in VC-doped Ti(C,N)-based nano cermets. With the increase of VC addition, the number of gray cores in- creased, the lattice parameter of Ti(C,N) phase increased, the grain size decreased, the hardness and fracture toughness of Ti(C,N)-based nano cermets were enhanced, and nearly full densification could be achieved. However, excessive addition of VC to 1 wt% resulted in slight decrease in hardness and fracture toughness. Some deep dimples were found in the fracture surface of cermets with VC addition, which corresponded to ductile fracture.展开更多
Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the n...Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.展开更多
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me...The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.展开更多
The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano ca...The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano calcium carbonate addition on phase compositions, strength and microstructure of corundum based castables were studied. The calcium aluminate cement-containing corundum based castables with the same CaO amount was also tested for comparison. The results show that, when temperature is higher than 900 ℃ , the phase compositions of nano CaCO3-containing mixture and the calcium aluminate cement containing mixture are the same, but the forming mechanism, modality and distribution of new phases in the castables are different. With temperature rising, the hydration cement dehydrates and reacts inside cement forming calcium aluminate until the alumina in cement is not enough for the reaction (ternperature is 91 400 ℃ ) , then reacts with the surrounding alumina forming cluster CA6 in the castables. The change process of nano CaCO3 in corundum based enstables is that nano calcium carbonate decomposes to CaO after firing at 800℃ which reacts with Al2O3 forming amorphous calcium aluminate that causes an in-situ bonding. With temperature rising, the formed calcium aluminate reacts with Al2O3 in matrix and wholly forms tabular CA6 at 1 600 ℃ , which distributes uniformly in the castables. The cold and hot strength of the castables with nano calcium carbonate are obviously higher than those of the castables without nano calcium carbonate, especially at 800 -1 000 ℃ due to smaller size and higher dispersion of the nano calcium carbonate and its different reaction mechanism with Al2O3.展开更多
The effect of nano diamond(ND)content on the microstructure,mechanical properties,and thermal conductivity of ZK60+x(x=0,0.05,0.1,0.15,0.2 wt.%)ND composites were investigated.The microstructures of ND/ZK60 composites...The effect of nano diamond(ND)content on the microstructure,mechanical properties,and thermal conductivity of ZK60+x(x=0,0.05,0.1,0.15,0.2 wt.%)ND composites were investigated.The microstructures of ND/ZK60 composites were observed,which indicated that the nanoscale MgZn_(2) and ND particles distributed evenly in theα-Mg matrix.The tensile yield strength(TYS)and compressive yield strength(CYS)of the composites first increased remarkably and then decreased with further increasing the ND content.Due to the surface area of the matrix-diamond interface increased and the grains sizes of composites decreased with the amount of ND increase,which cause the coefficient of thermal expansion(CTE)of the composites reduced significantly.Meanwhile,the thermal conductivity of the composite material decreases from 129 W·m^(−1)·K^(−1) to 116 W·m^(−1)·K^(−1) with the content of ND increasing from 0.05%to 2.0%.The thermal conductivity of the composites increases to the maximum and then decrease with the increase of temperature(in temperature range of 273-573 K).The ZK60+0.05 ND showed superior mechanical and thermal conductivity property,TYS of 343.97 MPa,CYS of 341.74 MPa,elongation of 15.71%,CTE of 7.3×10^(−6)K^(−1),and thermal conductivity of 129 W·m^(−1)·K^(−1) at room temperature.It is demonstrated that the ND content has an obvious influence on the microstructure,mechanical properties,and thermal conductivity of ND/ZK60 composites.展开更多
The nanometer Al2O3 dispersion strengthened NiCoCrAlY high-temperature protective coatings by crosscurrent CO2 laser on Ni-based superalloy GH4033 were produced. Microscopic morphologies, phase constitutions of claddi...The nanometer Al2O3 dispersion strengthened NiCoCrAlY high-temperature protective coatings by crosscurrent CO2 laser on Ni-based superalloy GH4033 were produced. Microscopic morphologies, phase constitutions of cladding coatings and distribution of nano-Al2O3 particles were examined using SEM and XRD. The results show that the interface grains, after adding proper nano-Al2O3, grow from epitaxial to non-epitaxial shape gradually, and the columnar dendrites become thinner and denser with cellular shape. Cracks in the substrate close to the interface are eliminated. Moreover, dispersive nano-Al2O3 particles mainly distribute around cellular substructure and on grain-boundaries, which prevents the diffusion of alloying elements and restrains the formation of new phase. There is a critical value of nano-Al2O3 addition, and the most suitable content of nano-Al2O3 is 1% (mass fraction) in this experimental conditions. The "nanometer effect" of nano-Al2O3 particles plays an important role in the improvement of coating microstructure.展开更多
Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its appli...Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.展开更多
Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on common carbon steel surface by pulse electrodeposition of nickel, tungsten, phosphorus, rare earth (nano-CeO2) and silicon carbide (nano-SiO2) particles. T...Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on common carbon steel surface by pulse electrodeposition of nickel, tungsten, phosphorus, rare earth (nano-CeO2) and silicon carbide (nano-SiO2) particles. The effects of nano-CeO2 concentrations in electrolyte on microstructures and properties of nano-composite coatings were studied. The samples were characterized with chemical compositions, elements distributions, microhardness and microstructures. The results indicated that when nano-CeO2 concentration was controlled at 10 g/L, the nano-composite coatings possessed higher microhardness and compact microstmctures with clear outline of spherical matrix metal crystallites, fine crystallite sizes and uniform distribution of elements W, P, Ce and Si within the Ni-W-P matrix metal. Increasing the nano-CeO2 particles concentrations from 4 to 10 g/L led to refinement in grain structure and improvement of microstructures, while when increased to 14 g/L, the crystallite sizes began to increase again and there were a lot of small boss with nodulation shape appearing on the nano-composite coatings surface.展开更多
By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for...By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C,N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick. When being sintered at 1 200 ℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1 200 ℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resulting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1 350 ℃ covers a wide range of 90500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2. Graphite exists in band-like shape.展开更多
The aim of the present work is to study the effect of Nano-barium sulfate additions on the physic-mechanical properties of hardened cement pastes. Nano-barium sulfate was prepared by the precipitation method. Eight mi...The aim of the present work is to study the effect of Nano-barium sulfate additions on the physic-mechanical properties of hardened cement pastes. Nano-barium sulfate was prepared by the precipitation method. Eight mixes of filled cement pastes containing 0.5 wt%, 1.0 wt%, 1.5 wt% and 2.0 wt% of both nano-barium sulfate and micro-limestone were prepared and compared to the base OPC. The hydration characteristics were evaluated by the measure of combined water content, bulk density, total porosity and compressive strength for samples hydrated up to 90 days. The progress of hydration reactions was followed up by XRD analysis. The morphology and microstructure were studied by SEM. Nano-size barium sulfate acted as a nucleating agent and enhanced the hydration of cement pastes up to 2.0% mass content. Also, the microstructure was improved considerably. Accordingly, nano-size barium sulfate can be used successfully in the preparation of filled cement.展开更多
β-sialon/nano-size SiC composite ceramic with DyAG(Dy3Al5O12) as grain boundary phase was fabricated through hot-pressing. The effect of nano-size SiC on densification, phase composition, microstructure and mechanica...β-sialon/nano-size SiC composite ceramic with DyAG(Dy3Al5O12) as grain boundary phase was fabricated through hot-pressing. The effect of nano-size SiC on densification, phase composition, microstructure and mechanical properties of the materials was studied展开更多
The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite ...The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature展开更多
In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were ...In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were conducted to examine the chemical composition, phase structure, and surface morphology of the sprayed TiO2 film. After calcined at 450℃ in air atmosphere for 2 h, mesoporous TiO2 nano-spheres clusters were formed on the surface of silicon wafer and the average size of nano-spheres was 250 nm. Ti presented as Ti 4+ oxidation state in TiO2 film, and the TiO2 film exhibited the anatase phase. The sprayed porous TiO2 films were employed as photocatalyst to degrade organic phosphorus in water samples. Compared with the TiO2 film prepared by Sol-Gel spin-coating method, the porous TiO2 film deposited by electrospray combined sol-gel method showed higher photocatalytic activity.展开更多
Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding...Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding between Al2O3 and SiO2 particles is well and the interface is even. Amorphous phases and nano crystals appear in the Al2O3/SiO2 ceramic core nano-composites, which both come into being during the cooling process after sintering. Glass phase does not appear between the Al2O3 and SiO2 particles and only appears among the Al2O3 particles, which can be explained with stress model. The quantity of the glass phase is not much and its influence on the high-temperature deformation of the ceramic core nano-composites is little.展开更多
Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of nickel, tungsten, phosphorus, nano-CeO2 and nano-SiO2 particles. The influence of nano-SiO2 particles concen...Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of nickel, tungsten, phosphorus, nano-CeO2 and nano-SiO2 particles. The influence of nano-SiO2 particles concentrations in electrolyte on microstructures and properties of the nano-composite coatings were researched, and the characteristics were assessed by chemical compositions, element distribution, deposition rate, microhardness and microstructures. The results indicate that when nano-SiO2 particles concentrations in electrolyte are controlled at 20 g·L-1, the deposition rate with 27.07 μm·h-1 and the microhardness with 666 Hv of the nano-composite coatings are highest, element line scanning and area scanning analyses show that the average contents of elements W, P, Si and Ce in the nano-composite coatings are close, displaying that the distribution of every element within the nano-composite coatings is even. An increase in nano-SiO2 particles concentrations in electrolyte (when lower than 20 g·L-1) leads to refinement in grain structure of nano-composite coatings, but when it improved to 30 g·L-1, the crystallite sizes increase again and in the meantime there are a lot of small boss with nodulation shape appearing on the surface of nano-composite coatings.展开更多
The formulation of nanocrystallinc NiTi shape memory alloys has potential effects in mechanical stimulation and medical im- plantology. The present work elucidates the effect of milling time on the product's structur...The formulation of nanocrystallinc NiTi shape memory alloys has potential effects in mechanical stimulation and medical im- plantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and mi- crohardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fractur- ing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninter- rupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to -93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline in- termetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.展开更多
基金Funded by the National Key Research and Development Plan of China(No.2017YFB0305900)。
文摘WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.
基金Project(2006CB600901) supported by the National Basic Research Program of ChinaProject(0991015) supported by Guangxi Natural Science Foundation,ChinaProject(200808MS083) supported by Guangxi Education Department Foundation,China
文摘Carbon spheres with size of 50-300 nm were synthesized via a solvent-thermal reaction with calcium carbide and chloroform as reactants in a sealed autoclave.The morphologies and microstructures of carbon spheres before and after high temperature treatment(HTT) were characterized by X-ray diffractometry(XRD) ,scanning electronic microscopy(SEM) ,energy diffraction spectroscopy(EDS) ,and transmission electron microscopy(TEM) .The formation mechanism of carbon spheres was discussed.The results indicate that the carbon spheres convert to hollow polyhedron through HTT.Carbon spheres are composed of entangled and curve graphitic layers with short range order similar to cotton structure,and carbon polyhedron with dimension of 50-250 nm and shell thickness of 15-30 nm.The change of solid spheres to hollow polyhedron with branches gives a new evidence for formation mechanism of hollow carbon spheres.
文摘TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.
文摘Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and potentiodynamic polarization methods. It has been found that by increasing the acetic acid/CeCl3·7H2O molar ratio, high uniform and crack-free films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.
基金financially supported by National Natural Science Foundation of China (No.50874076 and No.51074110)the Scientist Serving Enterprise Action Plan from Ministry of Science and Technology (No.2009GJF00030)
文摘In this paper, Ti(C,N)-based nano cermets were prepared by nano particles, and the effect of VC addition on the micmstructure and properties of Ti(C,N)-based nano cermets was investigated. The results showed that there existed black-core grayish-rim strucmre as well as gray-core grayish-rim structure in VC-doped Ti(C,N)-based nano cermets. With the increase of VC addition, the number of gray cores in- creased, the lattice parameter of Ti(C,N) phase increased, the grain size decreased, the hardness and fracture toughness of Ti(C,N)-based nano cermets were enhanced, and nearly full densification could be achieved. However, excessive addition of VC to 1 wt% resulted in slight decrease in hardness and fracture toughness. Some deep dimples were found in the fracture surface of cermets with VC addition, which corresponded to ductile fracture.
基金supported by the Open Foundation of Key Laboratory of the Ministry of Educationof Nonferrous Metal Alloys and Processes(No.EKL09002)The Ph.D.Fund Project of Lanzhou University of Science and Technology(No.BS01200904)
文摘Sol-gel technology was employed to synthesize nanosized precursors of La-Mg hydrogen storage alloy at different pH values (0.5, 1.5, 8.0 and 9.0) of reaction solution. The effect of pH value on microstructure of the nano precursors of La-Mg hydrogen storage alloy was studied by infrared radiation (IR), thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction analyzer (XRD) and transmission electron microscopy (TEM). IR results indicate that the chelating agent, citric acid, is not fully ionized, and carboxyl groups are not entirely used to complex metal ions in acidic solutions. The efficiency of complexing metal ions is enhanced in basic solutions. TG/DTA results show that the combustion may take place with low rate of the flame propagation that causes the longer combustion time when pH<1.5. On the contrary, the dry gel synthesized in basic solution combusts at low ignition temperature and combustion reaction is violent; it is easy to form fine particles. XRD and TEM results reveal that the precursor powders are mainly two-phase mixture of La 2 O 3 and MgO. The morphology of the particles is almost flake with the size of ~30 nm when pH is 8.0.
文摘The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.
文摘The castables specimens were prepared using white fused alumina particle and powder, α-Al2O3 micropowder, hydrated alumina, nano calcium carbonate or calcium aluminate cement as starting materials. Effects of nano calcium carbonate addition on phase compositions, strength and microstructure of corundum based castables were studied. The calcium aluminate cement-containing corundum based castables with the same CaO amount was also tested for comparison. The results show that, when temperature is higher than 900 ℃ , the phase compositions of nano CaCO3-containing mixture and the calcium aluminate cement containing mixture are the same, but the forming mechanism, modality and distribution of new phases in the castables are different. With temperature rising, the hydration cement dehydrates and reacts inside cement forming calcium aluminate until the alumina in cement is not enough for the reaction (ternperature is 91 400 ℃ ) , then reacts with the surrounding alumina forming cluster CA6 in the castables. The change process of nano CaCO3 in corundum based enstables is that nano calcium carbonate decomposes to CaO after firing at 800℃ which reacts with Al2O3 forming amorphous calcium aluminate that causes an in-situ bonding. With temperature rising, the formed calcium aluminate reacts with Al2O3 in matrix and wholly forms tabular CA6 at 1 600 ℃ , which distributes uniformly in the castables. The cold and hot strength of the castables with nano calcium carbonate are obviously higher than those of the castables without nano calcium carbonate, especially at 800 -1 000 ℃ due to smaller size and higher dispersion of the nano calcium carbonate and its different reaction mechanism with Al2O3.
基金financial support of Qing Hai Provincial Natural Science Foundation (Grant No. 2018-ZJ949Q)。
文摘The effect of nano diamond(ND)content on the microstructure,mechanical properties,and thermal conductivity of ZK60+x(x=0,0.05,0.1,0.15,0.2 wt.%)ND composites were investigated.The microstructures of ND/ZK60 composites were observed,which indicated that the nanoscale MgZn_(2) and ND particles distributed evenly in theα-Mg matrix.The tensile yield strength(TYS)and compressive yield strength(CYS)of the composites first increased remarkably and then decreased with further increasing the ND content.Due to the surface area of the matrix-diamond interface increased and the grains sizes of composites decreased with the amount of ND increase,which cause the coefficient of thermal expansion(CTE)of the composites reduced significantly.Meanwhile,the thermal conductivity of the composite material decreases from 129 W·m^(−1)·K^(−1) to 116 W·m^(−1)·K^(−1) with the content of ND increasing from 0.05%to 2.0%.The thermal conductivity of the composites increases to the maximum and then decrease with the increase of temperature(in temperature range of 273-573 K).The ZK60+0.05 ND showed superior mechanical and thermal conductivity property,TYS of 343.97 MPa,CYS of 341.74 MPa,elongation of 15.71%,CTE of 7.3×10^(−6)K^(−1),and thermal conductivity of 129 W·m^(−1)·K^(−1) at room temperature.It is demonstrated that the ND content has an obvious influence on the microstructure,mechanical properties,and thermal conductivity of ND/ZK60 composites.
基金Project(20060287019) supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject(kjsmcx07001) supported by the Opening Research Fund of Jiangsu Key Laboratory of Tribology, ChinaProject(CX08B-039Z) supported by the Graduate Innovation Foundation of Jiangsu Province, China
文摘The nanometer Al2O3 dispersion strengthened NiCoCrAlY high-temperature protective coatings by crosscurrent CO2 laser on Ni-based superalloy GH4033 were produced. Microscopic morphologies, phase constitutions of cladding coatings and distribution of nano-Al2O3 particles were examined using SEM and XRD. The results show that the interface grains, after adding proper nano-Al2O3, grow from epitaxial to non-epitaxial shape gradually, and the columnar dendrites become thinner and denser with cellular shape. Cracks in the substrate close to the interface are eliminated. Moreover, dispersive nano-Al2O3 particles mainly distribute around cellular substructure and on grain-boundaries, which prevents the diffusion of alloying elements and restrains the formation of new phase. There is a critical value of nano-Al2O3 addition, and the most suitable content of nano-Al2O3 is 1% (mass fraction) in this experimental conditions. The "nanometer effect" of nano-Al2O3 particles plays an important role in the improvement of coating microstructure.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20060287019)Opening Research Fund of Jiangsu Provincial Key Laboratory of Tribology of China (Grant No. kjsmcx07001)Jiangsu Provincial Graduate Innovation Foundation of China (Grant No. CX08B-039Z)
文摘Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.
基金Applied Basic Research Plans Program of Yunnan Province(2007E187M)Scientific Research Fund (2006-02)Analysis and Measurement Research Fund (2007-22) of Kunming University of Science and Technology
文摘Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on common carbon steel surface by pulse electrodeposition of nickel, tungsten, phosphorus, rare earth (nano-CeO2) and silicon carbide (nano-SiO2) particles. The effects of nano-CeO2 concentrations in electrolyte on microstructures and properties of nano-composite coatings were studied. The samples were characterized with chemical compositions, elements distributions, microhardness and microstructures. The results indicated that when nano-CeO2 concentration was controlled at 10 g/L, the nano-composite coatings possessed higher microhardness and compact microstmctures with clear outline of spherical matrix metal crystallites, fine crystallite sizes and uniform distribution of elements W, P, Ce and Si within the Ni-W-P matrix metal. Increasing the nano-CeO2 particles concentrations from 4 to 10 g/L led to refinement in grain structure and improvement of microstructures, while when increased to 14 g/L, the crystallite sizes began to increase again and there were a lot of small boss with nodulation shape appearing on the nano-composite coatings surface.
文摘By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C,N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick. When being sintered at 1 200 ℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1 200 ℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resulting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1 350 ℃ covers a wide range of 90500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2. Graphite exists in band-like shape.
文摘The aim of the present work is to study the effect of Nano-barium sulfate additions on the physic-mechanical properties of hardened cement pastes. Nano-barium sulfate was prepared by the precipitation method. Eight mixes of filled cement pastes containing 0.5 wt%, 1.0 wt%, 1.5 wt% and 2.0 wt% of both nano-barium sulfate and micro-limestone were prepared and compared to the base OPC. The hydration characteristics were evaluated by the measure of combined water content, bulk density, total porosity and compressive strength for samples hydrated up to 90 days. The progress of hydration reactions was followed up by XRD analysis. The morphology and microstructure were studied by SEM. Nano-size barium sulfate acted as a nucleating agent and enhanced the hydration of cement pastes up to 2.0% mass content. Also, the microstructure was improved considerably. Accordingly, nano-size barium sulfate can be used successfully in the preparation of filled cement.
文摘β-sialon/nano-size SiC composite ceramic with DyAG(Dy3Al5O12) as grain boundary phase was fabricated through hot-pressing. The effect of nano-size SiC on densification, phase composition, microstructure and mechanical properties of the materials was studied
文摘The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature
基金Supported by the National Basic Research Program of China (No. 2009CB320300)National Natural Science Foundation of China (No. 61072023)National High Technology Research and Development Programs (No.2012AA040506, No. 2012AA101608)
文摘In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were conducted to examine the chemical composition, phase structure, and surface morphology of the sprayed TiO2 film. After calcined at 450℃ in air atmosphere for 2 h, mesoporous TiO2 nano-spheres clusters were formed on the surface of silicon wafer and the average size of nano-spheres was 250 nm. Ti presented as Ti 4+ oxidation state in TiO2 film, and the TiO2 film exhibited the anatase phase. The sprayed porous TiO2 films were employed as photocatalyst to degrade organic phosphorus in water samples. Compared with the TiO2 film prepared by Sol-Gel spin-coating method, the porous TiO2 film deposited by electrospray combined sol-gel method showed higher photocatalytic activity.
文摘Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding between Al2O3 and SiO2 particles is well and the interface is even. Amorphous phases and nano crystals appear in the Al2O3/SiO2 ceramic core nano-composites, which both come into being during the cooling process after sintering. Glass phase does not appear between the Al2O3 and SiO2 particles and only appears among the Al2O3 particles, which can be explained with stress model. The quantity of the glass phase is not much and its influence on the high-temperature deformation of the ceramic core nano-composites is little.
基金Projects supported by Applied Basic Research Plans Programof Yunnan Province (2007E 187M)Scientific Research Fund(2006-02)Analysis and Measurement Research Fund (2007-22) of Kunming University of Science and Technology
文摘Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of nickel, tungsten, phosphorus, nano-CeO2 and nano-SiO2 particles. The influence of nano-SiO2 particles concentrations in electrolyte on microstructures and properties of the nano-composite coatings were researched, and the characteristics were assessed by chemical compositions, element distribution, deposition rate, microhardness and microstructures. The results indicate that when nano-SiO2 particles concentrations in electrolyte are controlled at 20 g·L-1, the deposition rate with 27.07 μm·h-1 and the microhardness with 666 Hv of the nano-composite coatings are highest, element line scanning and area scanning analyses show that the average contents of elements W, P, Si and Ce in the nano-composite coatings are close, displaying that the distribution of every element within the nano-composite coatings is even. An increase in nano-SiO2 particles concentrations in electrolyte (when lower than 20 g·L-1) leads to refinement in grain structure of nano-composite coatings, but when it improved to 30 g·L-1, the crystallite sizes increase again and in the meantime there are a lot of small boss with nodulation shape appearing on the surface of nano-composite coatings.
文摘The formulation of nanocrystallinc NiTi shape memory alloys has potential effects in mechanical stimulation and medical im- plantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and mi- crohardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fractur- ing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninter- rupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to -93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline in- termetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.