Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro...Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW.展开更多
This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy...This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.展开更多
The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets...The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets.Hence,we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review.We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets.Then,two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed:in situ synthesis and post-synthesis modification.Subsequently,we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis,sensing,separation,and energy storage.Finally,we have shared our insights on the challenges of functional crystalline framework nanosheets,hoping to contribute to the knowledge base for optimizing the preparation methods,expanding categories,improving stability,and exploring potential applications.展开更多
Nanomaterials are one of the research and development hotspots in the field of cutting-edge new materials,and also an important strategic emerging industry.Magnetic nanomaterials have broad application prospects in fi...Nanomaterials are one of the research and development hotspots in the field of cutting-edge new materials,and also an important strategic emerging industry.Magnetic nanomaterials have broad application prospects in fields such as chemical engineering,new materials,electronic information,and biomedicine.This article introduces the application progress and preparation methods of magnetic nanomaterials,and puts forward suggestions for further optimizing the preparation process of magnetic nanomaterials and developing new magnetic materials with better performance.展开更多
The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materi...The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materials. Point defect theory has been widely applied in material mineralization research, unfavorable transformation controlling, material modification, the research and development of new materials and so on. Point defect theory is one of the important theories for new material research and development. Herein we mainly discuss the application of point defect theory in some structural material researches.展开更多
The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable cr...The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.展开更多
Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99....Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite, a-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.展开更多
To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm...To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm width were exposed to four different environmental conditions at different exposure times in order to determine the effect of temperature and water availability on the self-healing potential.After the exposure,the control and tested concrete cubes were evaluated for regained strength,void reduction,corrosion inhibition,damp proofing,relative impermeability and durability.The samples with SF10CA have better cementitious filling and low percentage of voids and water absorption.展开更多
Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure were treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within t...Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure were treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principle calculation opens a door to the search and design of new piezoelectric material. Further application of first principle calculation to forecast the whole piezoelectric properties was also discussed.展开更多
The biological intracellular vesicles, formed from the cell membrane or from different cell organelles, play a main role in the intracellular transport, transfer and exchange of molecules and information. Extracellula...The biological intracellular vesicles, formed from the cell membrane or from different cell organelles, play a main role in the intracellular transport, transfer and exchange of molecules and information. Extracellular vesicles are also detected in organisms belonging to any of the three main branches of evolution, Archaea, Bacteria and Eukarya. There is an increasing consensus that these vesicles are important mediators of intercellular communication. All the intracellular and extracellular vesicles present a characteristic lipid composition and organization that governs their formation, targeting and function. This paper gives an overview of the lipid chemical and physical structure, strongly related to their biological function. The properties and role of the different types of lipids from membranes and vesicles are described. Then, their physical structure is shown as self-associated in a bilayer and organized as a lyotropic liquid crystal. The present paper underlies the structural similarity between these biological vesicles and a new synthetic material, the “liquid crystalline fullerodendrimers” obtained from the biological model. It is composed of a basket of carbon associated with a liquid crystalline material and has been shown to exhibit highly efficient properties of information transfer. Our observation stresses the essential role of the liquid crystalline structure of lipids in their function as biological nanovehicles of information. The comparison with the synthetic material contributes to a better understanding of the role of lipids for cell communication in living organisms.展开更多
Melting of crystalline material is a common physical phenomenon,yet it remains elusive owing to the diversity in physical pictures.In this work,we proposed a deep learning architecture to learn the physical states(sol...Melting of crystalline material is a common physical phenomenon,yet it remains elusive owing to the diversity in physical pictures.In this work,we proposed a deep learning architecture to learn the physical states(solid-or liquidphase)from the atomic trajectories of the bulk crystalline materials with four typical lattice types.The method has ultrahigh accuracy(higher than 95%)for the classification of solid-liquid atoms during the phase transition process and is almost insensitive to temperature.The atomic physical states are identified from atomic behaviors without considering any characteristic threshold parameter,which yet is necessary for the classical methods.The phase transition of bulk crystalline materials can be correctly predicted by learning from the atomic behaviors of different materials,which confirms the close correlation between atomic behaviors and atomic physical states.These evidences forecast that there should be a more general undiscovered physical quantity implicated in the atomic behaviors and elucidate the nature of bulk crystalline melting.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedica...The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self assemblies to amphiphilic self assemblies is given in this paper with 49 references. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano porous materials is briefly described.展开更多
The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials wit...The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures.In this work,it was examined a series of organometallic polymer precursors with different silicon(Si)and zirconium(Zr)molar ratios,ranging from 9:1 to 5:5,prepared via sol-gel method.All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano-and micro-feature sized structures.Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase.The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis,which revealed a lower crystallization temperature for microstructures compared to bulk materials.Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400℃.Under the proper conditions,a wide variety of crystalline phases as well as zircon(ZrSiO_(4)-a highly stable material)can be observed.In addition,the highest new record of achieved resolution below 60 nm has been reached.The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment.展开更多
The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron m...The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.展开更多
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development...The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.展开更多
Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ...Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ratio of carbon/hydrogen/oxygen. By means of atomic force microscopy (AFM) and X-ray diffraction (XRD), it was shown that the NCD films deposited in the C2H5OH/H2 system possesses more uniform surface than that deposited in the CH4/H2/O2 system. Results from micro-Raman spectroscopy revealed that the quality of the NCD films was different even though the plasmas in the two systems contain exactly the same proportion of elements. In order to explain this phenomenon, the bond energy of forming OH groups, energy distraction in plasma and the deposition process of NCD films were studied. The experimental results and discussion indicate that for a same ratio of carbon/hydrogen/oxygen, the C2H5OH/H2 plasma was beneficial to deposit high quality NCD films with smaller average grain size and lower surface roughness.展开更多
Three kinds of nano-crystalline high density alloys(86W-7Ni-3Fe-4Mo, 90W-4Ni-2Fe-4Mo and 90W4Ni-2Fe-3.8Mo-0.2RE) were fabricated by a technique combining lower temperature vacuum sintering with highenergy ball milling...Three kinds of nano-crystalline high density alloys(86W-7Ni-3Fe-4Mo, 90W-4Ni-2Fe-4Mo and 90W4Ni-2Fe-3.8Mo-0.2RE) were fabricated by a technique combining lower temperature vacuum sintering with highenergy ball milling mechanical alloying. The crystalline size and microstructures of the specimens sintered at different sintering temperatures were examined by X-ray diffraction(XRD) and scanning electron microscope(SEM). The results show that the optimal sintering temperature of 86W-7Ni-3Fe-4Mo, 90W-4Ni-2Fe-4Mo and 90W-4Ni-2Fe3.8Mo-0.2RE alloys are 1 300 - 1 350 ℃. When they are sintered at 1 300 ℃ for 75 min, the hardness of three kinds of specimens can reach above HRC30, the relative density can reach above 96%,and 90W-4Ni-2Fe-3.8Mo-0.2RE alloy possesses the best integrated properties, its hardness is HRC35 and its relative density is 98%.展开更多
Plasma technology has some shortcomings, such as higher energy consumption and byproducts produced in the reaction process. However non-thermal plasma associated with catalyst can resolve these problems. So this kind ...Plasma technology has some shortcomings, such as higher energy consumption and byproducts produced in the reaction process. However non-thermal plasma associated with catalyst can resolve these problems. So this kind of technology was paid more and more attention to treat waste gas. In this paper, we make use of this technology to decompose toluene under different electric field and packed materials. At the same time, the mechanism of toluene decomposition using plasma and catalyst is discussed. The experimental results show toluene decomposition increases with electric field strength increasing and flow velocity and initial concentration decreasing. There are four conditions in plasma: without packed materials (1);with packed materials (2);with BaTiO3 in the surfaces of packed materials (3);and with nanometer Ba0.8Sr0.2Zr0.1Ti0.9O3 (4). Toluene decomposition represents a obvious trend, that is, η(4) > η(3) > η(2) > η(1). The best decomposition efficiency of toluene arrives at 95%.展开更多
We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical va...We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical vapor deposition method, in which CH4 and H2 act as a source and diluting gases, respectively. N2, H2, and NH3 were used as the etching gases, respectively. Results show that the optimum conditions can be obtained only for the case of H2 gas. The crystal morphology and crystallinity of the samples have been examined by scanning electron microscopy and X-ray diffraction, respectively.展开更多
文摘Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW.
文摘This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.
基金financially supported by the National Natural Science Foundation of China (Nos.21727808,21971114,21908105,and 22205100)the Jiangsu Provincial Funds for Natural Science Foundation (No.BK20200090)。
文摘The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets.Hence,we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review.We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets.Then,two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed:in situ synthesis and post-synthesis modification.Subsequently,we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis,sensing,separation,and energy storage.Finally,we have shared our insights on the challenges of functional crystalline framework nanosheets,hoping to contribute to the knowledge base for optimizing the preparation methods,expanding categories,improving stability,and exploring potential applications.
文摘Nanomaterials are one of the research and development hotspots in the field of cutting-edge new materials,and also an important strategic emerging industry.Magnetic nanomaterials have broad application prospects in fields such as chemical engineering,new materials,electronic information,and biomedicine.This article introduces the application progress and preparation methods of magnetic nanomaterials,and puts forward suggestions for further optimizing the preparation process of magnetic nanomaterials and developing new magnetic materials with better performance.
基金This work was supported by the "863" program (No. 2003AA322020)
文摘The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materials. Point defect theory has been widely applied in material mineralization research, unfavorable transformation controlling, material modification, the research and development of new materials and so on. Point defect theory is one of the important theories for new material research and development. Herein we mainly discuss the application of point defect theory in some structural material researches.
基金Funded by the Scientific and Technological Project of Hubei Province(2004BCS005)
文摘The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.
文摘Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-A1203-SiO2 and CaO--MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite, a-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.
文摘To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm width were exposed to four different environmental conditions at different exposure times in order to determine the effect of temperature and water availability on the self-healing potential.After the exposure,the control and tested concrete cubes were evaluated for regained strength,void reduction,corrosion inhibition,damp proofing,relative impermeability and durability.The samples with SF10CA have better cementitious filling and low percentage of voids and water absorption.
基金Project supported by the National Natural Science Foundation of China (50242007) and Shanghai Supercomputing Center through Supplying Computational Time
文摘Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure were treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principle calculation opens a door to the search and design of new piezoelectric material. Further application of first principle calculation to forecast the whole piezoelectric properties was also discussed.
文摘The biological intracellular vesicles, formed from the cell membrane or from different cell organelles, play a main role in the intracellular transport, transfer and exchange of molecules and information. Extracellular vesicles are also detected in organisms belonging to any of the three main branches of evolution, Archaea, Bacteria and Eukarya. There is an increasing consensus that these vesicles are important mediators of intercellular communication. All the intracellular and extracellular vesicles present a characteristic lipid composition and organization that governs their formation, targeting and function. This paper gives an overview of the lipid chemical and physical structure, strongly related to their biological function. The properties and role of the different types of lipids from membranes and vesicles are described. Then, their physical structure is shown as self-associated in a bilayer and organized as a lyotropic liquid crystal. The present paper underlies the structural similarity between these biological vesicles and a new synthetic material, the “liquid crystalline fullerodendrimers” obtained from the biological model. It is composed of a basket of carbon associated with a liquid crystalline material and has been shown to exhibit highly efficient properties of information transfer. Our observation stresses the essential role of the liquid crystalline structure of lipids in their function as biological nanovehicles of information. The comparison with the synthetic material contributes to a better understanding of the role of lipids for cell communication in living organisms.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2019M663935XB)the Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-261)the National Natural Science Foundation of China(Grant Nos.11802225 and 51878548)
文摘Melting of crystalline material is a common physical phenomenon,yet it remains elusive owing to the diversity in physical pictures.In this work,we proposed a deep learning architecture to learn the physical states(solid-or liquidphase)from the atomic trajectories of the bulk crystalline materials with four typical lattice types.The method has ultrahigh accuracy(higher than 95%)for the classification of solid-liquid atoms during the phase transition process and is almost insensitive to temperature.The atomic physical states are identified from atomic behaviors without considering any characteristic threshold parameter,which yet is necessary for the classical methods.The phase transition of bulk crystalline materials can be correctly predicted by learning from the atomic behaviors of different materials,which confirms the close correlation between atomic behaviors and atomic physical states.These evidences forecast that there should be a more general undiscovered physical quantity implicated in the atomic behaviors and elucidate the nature of bulk crystalline melting.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金Supported by National Natural Science Foundation(No.0 5 1730 0 3) Beijing Science and Technology New Star Program(No.H0 10 4 10 0 10 112 ) and Im portant Natural Science Foundation of Beijing(No.2 0 310 0 1) .
文摘The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self assemblies to amphiphilic self assemblies is given in this paper with 49 references. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano porous materials is briefly described.
基金The US AMRDEC grant No.W911NF-16-2-0069“Enhanced Absorption in Stopped-Light Photonic Nanostructures:Applications to Efficient Sensing”EU LASERLAB-EUROPE(grant agreement No.871124Horizon 2020 research and innovation programme)projects are acknowleged for the financial support.D.G.acknowledges the financial support from the European Social Fund(project No 09.3.3-LMT-K712-17-0016)under grant agreement with the Research Council of Lithuania(LMTLT).
文摘The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures.In this work,it was examined a series of organometallic polymer precursors with different silicon(Si)and zirconium(Zr)molar ratios,ranging from 9:1 to 5:5,prepared via sol-gel method.All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano-and micro-feature sized structures.Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase.The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis,which revealed a lower crystallization temperature for microstructures compared to bulk materials.Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400℃.Under the proper conditions,a wide variety of crystalline phases as well as zircon(ZrSiO_(4)-a highly stable material)can be observed.In addition,the highest new record of achieved resolution below 60 nm has been reached.The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment.
基金This work was supported by State Key Laboratory for Powder Metallurgy of China. We are grateful to the staff of Hu'nan Yin Zhou Nonferrous Metals Hi-Tech. Ltd. Company for cemented carbides powders.
文摘The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.
基金Sponsored by National Natural Science Foundation of China (21231002,21276026,21271023,21173021,91022006,11202193,11172276,and 11072225)the 111 Project ( B07012)+1 种基金the Program of Cooperation of the Beijing Education Commission ( 20091739006)Specialized Research Fund for the Doctoral Program of Higher Education ( 20101101110031)
文摘The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.
文摘Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ratio of carbon/hydrogen/oxygen. By means of atomic force microscopy (AFM) and X-ray diffraction (XRD), it was shown that the NCD films deposited in the C2H5OH/H2 system possesses more uniform surface than that deposited in the CH4/H2/O2 system. Results from micro-Raman spectroscopy revealed that the quality of the NCD films was different even though the plasmas in the two systems contain exactly the same proportion of elements. In order to explain this phenomenon, the bond energy of forming OH groups, energy distraction in plasma and the deposition process of NCD films were studied. The experimental results and discussion indicate that for a same ratio of carbon/hydrogen/oxygen, the C2H5OH/H2 plasma was beneficial to deposit high quality NCD films with smaller average grain size and lower surface roughness.
文摘Three kinds of nano-crystalline high density alloys(86W-7Ni-3Fe-4Mo, 90W-4Ni-2Fe-4Mo and 90W4Ni-2Fe-3.8Mo-0.2RE) were fabricated by a technique combining lower temperature vacuum sintering with highenergy ball milling mechanical alloying. The crystalline size and microstructures of the specimens sintered at different sintering temperatures were examined by X-ray diffraction(XRD) and scanning electron microscope(SEM). The results show that the optimal sintering temperature of 86W-7Ni-3Fe-4Mo, 90W-4Ni-2Fe-4Mo and 90W-4Ni-2Fe3.8Mo-0.2RE alloys are 1 300 - 1 350 ℃. When they are sintered at 1 300 ℃ for 75 min, the hardness of three kinds of specimens can reach above HRC30, the relative density can reach above 96%,and 90W-4Ni-2Fe-3.8Mo-0.2RE alloy possesses the best integrated properties, its hardness is HRC35 and its relative density is 98%.
文摘Plasma technology has some shortcomings, such as higher energy consumption and byproducts produced in the reaction process. However non-thermal plasma associated with catalyst can resolve these problems. So this kind of technology was paid more and more attention to treat waste gas. In this paper, we make use of this technology to decompose toluene under different electric field and packed materials. At the same time, the mechanism of toluene decomposition using plasma and catalyst is discussed. The experimental results show toluene decomposition increases with electric field strength increasing and flow velocity and initial concentration decreasing. There are four conditions in plasma: without packed materials (1);with packed materials (2);with BaTiO3 in the surfaces of packed materials (3);and with nanometer Ba0.8Sr0.2Zr0.1Ti0.9O3 (4). Toluene decomposition represents a obvious trend, that is, η(4) > η(3) > η(2) > η(1). The best decomposition efficiency of toluene arrives at 95%.
文摘We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550℃ and the reaction pressure of 4 kPa by hot filament chemical vapor deposition method, in which CH4 and H2 act as a source and diluting gases, respectively. N2, H2, and NH3 were used as the etching gases, respectively. Results show that the optimum conditions can be obtained only for the case of H2 gas. The crystal morphology and crystallinity of the samples have been examined by scanning electron microscopy and X-ray diffraction, respectively.