Eddies are major elements of ocean dynamics that affect ocean production.Understanding their effects on plankton distribution may help understand the dynamics of harmful phytoplankton blooms.Previous studies on the ef...Eddies are major elements of ocean dynamics that affect ocean production.Understanding their effects on plankton distribution may help understand the dynamics of harmful phytoplankton blooms.Previous studies on the effects of eddies in the northern Arabian Sea have primarily focused on the zooplankton community,and few have observed zooplankton dynamics during winter blooms of Noctiluca scintillans.We investigated zooplankton community structure and the related environmental variability during a N.scintillans bloom that was affected by an eddy in February 2018.The sampling stations were deployed at eddy core and eddy edge distinguished in salinity,temperature,and velocity.Results show that N.scintillans bloomed at the eddy core with high-velocity currents induced by warm eddies that moved from eddy core to eddy edge.As a result,blooms significantly changed the zooplankton community structure.Non-bloom stations had higher zooplankton diversity than bloom stations.Zooplankton at non-bloom stations were dominated by either tunicates or copepods,such as Thalia democratica and Pleuromamma gracilis.In addition to the influence of N.scintillans blooms,the velocity of eddy currents was a crucial factor on the similarities in the zooplankton community composition between eddy edge and eddy core.Moreover,the lower abiotic factors in bloom area contribute to the structuring of the zooplankton community during N.scintillans blooms.展开更多
The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size...The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.展开更多
Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally va...Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.展开更多
The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Ther...The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.展开更多
The constant need for high-strength materials in the construction industry promotes the research of additives that improve the properties of masonry materials. The use of allophane as an additive in concrete and morta...The constant need for high-strength materials in the construction industry promotes the research of additives that improve the properties of masonry materials. The use of allophane as an additive in concrete and mortar mixtures was implemented to improve their strength and waterproofing, respectively, using compression and water absorption tests according to their corresponding standards (ASTM C1231, ASTM D2938, and ASTM C1585). The samples were evaluated at different concentrations and curing ages. In addition, different sand/cement ratios were considered for the mortar. The results revealed that there was a 9.4% increase in compressive strength in concrete and a 23.7% reduction in water absorption in mortar for the 5:1 ratio. These changes would be the result of the interaction of the nanoporous additive in the atomic crystal structure of the material demonstrating the nanotechnological nature of allophane.展开更多
Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique wa...Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.展开更多
In line with recent studies,where it has been shown that nanofluids containing graphene have a stronger capacity to boost the heat transfer coefficient with respect to ordinary nanofluids,experiments have been conducted ...In line with recent studies,where it has been shown that nanofluids containing graphene have a stronger capacity to boost the heat transfer coefficient with respect to ordinary nanofluids,experiments have been conducted using water with cobalt ferrite/graphene nanoparticles.In particular,a circular channel made of copper subjected to a constant heatflux has been considered.As nanoparticles are sensitive to the presence of a magneticfield,different conditions have been examined,allowing both the strength and the frequency of such afield to span relatively wide ranges and assuming different concentrations of nanoparticles.According to thefindings,the addition of nanoparticles to thefluid causes its rotation speed to increase by a factor of two,whereas ultraviolet radiation plays a negligible role.The amount of time required to attain the maximum rotation speed of the nanofluid and the Nusselt number have been measured under both constant and alternating magneticfields for a ferrofluid with a concentration of 0.5%and atflow Reynolds number of 550 and 1750.展开更多
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat...Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.展开更多
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi...WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.展开更多
Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinic...Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.展开更多
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic d...The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.展开更多
基金Supported by the World Academy of Sciences(TWAS)the Chinese Academy of Sciences(CAS)+4 种基金the National Natural Science Foundation of China(Nos.31971432,41506161)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML 2019 ZD 0405)the Guangdong Marine Economy Promotion Projects Fund(No.GDOE[2019]A 32)the Science and Technology Planning Project of Guangdong Province,China(No.2017 B 0303014052)the Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE 2018 PY 01)。
文摘Eddies are major elements of ocean dynamics that affect ocean production.Understanding their effects on plankton distribution may help understand the dynamics of harmful phytoplankton blooms.Previous studies on the effects of eddies in the northern Arabian Sea have primarily focused on the zooplankton community,and few have observed zooplankton dynamics during winter blooms of Noctiluca scintillans.We investigated zooplankton community structure and the related environmental variability during a N.scintillans bloom that was affected by an eddy in February 2018.The sampling stations were deployed at eddy core and eddy edge distinguished in salinity,temperature,and velocity.Results show that N.scintillans bloomed at the eddy core with high-velocity currents induced by warm eddies that moved from eddy core to eddy edge.As a result,blooms significantly changed the zooplankton community structure.Non-bloom stations had higher zooplankton diversity than bloom stations.Zooplankton at non-bloom stations were dominated by either tunicates or copepods,such as Thalia democratica and Pleuromamma gracilis.In addition to the influence of N.scintillans blooms,the velocity of eddy currents was a crucial factor on the similarities in the zooplankton community composition between eddy edge and eddy core.Moreover,the lower abiotic factors in bloom area contribute to the structuring of the zooplankton community during N.scintillans blooms.
基金the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)+3 种基金the State Key Program of National Natural Science of China(No.42130411)the International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)the Taishan Scholars Project(to Song SUN)。
文摘The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.
基金The National Key Research and Development Program of China under contact No.2021YFC3101702the Natural Science Foundation of Zhejiang Province under contact Nos LY22D060006 and LY14D060007+1 种基金the Key R&D Program of Zhejiang under contact No.2022C03044the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) under contact No.SZ2001。
文摘Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.
基金Supported by the Innovation Team Project of Ecological Environment Monitoring and Restoration of Fishery Waters in the East China Sea of the Chinese Academy of Fishery Sciences(No.2020TD14)the National Basic Research Program of China(973 Program)(No.2010CB429005)。
文摘The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.
文摘The constant need for high-strength materials in the construction industry promotes the research of additives that improve the properties of masonry materials. The use of allophane as an additive in concrete and mortar mixtures was implemented to improve their strength and waterproofing, respectively, using compression and water absorption tests according to their corresponding standards (ASTM C1231, ASTM D2938, and ASTM C1585). The samples were evaluated at different concentrations and curing ages. In addition, different sand/cement ratios were considered for the mortar. The results revealed that there was a 9.4% increase in compressive strength in concrete and a 23.7% reduction in water absorption in mortar for the 5:1 ratio. These changes would be the result of the interaction of the nanoporous additive in the atomic crystal structure of the material demonstrating the nanotechnological nature of allophane.
文摘Code converters are essential in digital nano communication;therefore,a low-complexity optimal QCA layout for a BCD to Excess-3 code converter has been proposed in this paper.A QCA clockphase-based design technique was adopted to investigate integration with other complicated circuits.Using a unique XOR gate,the recommended circuit’s cell complexity has been decreased.The findings produced using the QCADesigner-2.0.3,a reliable simulation tool,prove the effectiveness of the current structure over earlier designs by considering the number of cells deployed,the area occupied,and the latency as design metrics.In addition,the popular tool QCAPro was used to estimate the energy dissipation of the proposed design.The proposed technique reduces the occupied space by∼40%,improves cell complexity by∼20%,and reduces energy dissipation by∼1.8 times(atγ=1.5EK)compared to the current scalable designs.This paper also studied the suggested structure’s energy dissipation and compared it to existing works for a better performance evaluation.
文摘In line with recent studies,where it has been shown that nanofluids containing graphene have a stronger capacity to boost the heat transfer coefficient with respect to ordinary nanofluids,experiments have been conducted using water with cobalt ferrite/graphene nanoparticles.In particular,a circular channel made of copper subjected to a constant heatflux has been considered.As nanoparticles are sensitive to the presence of a magneticfield,different conditions have been examined,allowing both the strength and the frequency of such afield to span relatively wide ranges and assuming different concentrations of nanoparticles.According to thefindings,the addition of nanoparticles to thefluid causes its rotation speed to increase by a factor of two,whereas ultraviolet radiation plays a negligible role.The amount of time required to attain the maximum rotation speed of the nanofluid and the Nusselt number have been measured under both constant and alternating magneticfields for a ferrofluid with a concentration of 0.5%and atflow Reynolds number of 550 and 1750.
基金supported by the Key Research and Development Plan of Shaanxi Province (2023-GHZD-12)the Opening Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures (SVL2021-KF-12)+1 种基金Fundamental Research Funds for the Central Universities (G2020KY05112)the 111 Project (BP0719007)
文摘Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating.
基金Funded by the National Key Research and Development Plan of China(No.2017YFB0305900)。
文摘WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.
基金financially supported by the National Natural Science Foundation of China(grant no.8217070298)Guangdong Basic and Applied Basic Research Foundation(grant no.2020A1515110770,2021A1515220011,2022A1515010335).
文摘Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
基金The work is supported in part by the National Natural Science Foundation of China(Grant Nos.62171483,82061148011)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ23F010004)+1 种基金Hangzhou Agricultural and Social Development Research Key Project(Grant No.20231203A08)Doctoral Initiation Program of the Tenth Affiliated Hospital,Southern Medical University(Grant No.K202308).
文摘The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.