期刊文献+
共找到92,550篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of nano TiN/Ti refiner on as-cast and hot-working microstructure of commercial purity aluminum 被引量:4
1
作者 蔡思祺 李玉洁 +2 位作者 谌援 李欣蔚 薛丽红 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1890-1897,共8页
A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was inve... A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization. 展开更多
关键词 nano TiN/Ti composite grain refiner commercial purity aluminum grain refinement weld joint deformation and recrystallization
下载PDF
In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites 被引量:2
2
作者 李海鹏 范佳薇 +3 位作者 康建立 赵乃勤 王雪霞 李宝娥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2331-2336,共6页
Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed tha... Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix. 展开更多
关键词 aluminum matrix composites carbon nanotubes chemical vapor deposition in-situ synthesis
下载PDF
Effects of acetic acid on microstructure and electrochemical properties of nano cerium oxide films coated on AA7020-T6 aluminum alloy 被引量:7
3
作者 H. Hasannejad T. Shahrabi M. Aliofkhazraei 《Rare Metals》 SCIE EI CAS CSCD 2009年第1期98-101,共4页
Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scann... Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and potentiodynamic polarization methods. It has been found that by increasing the acetic acid/CeCl3·7H2O molar ratio, high uniform and crack-free films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase. 展开更多
关键词 nano cerium oxide films acetic acid aluminum alloy electrochemical property MICROSTRUCTURE
下载PDF
Synthesis of Neodymium-Doped Yttrium Aluminum Garnet (Nd∶YAG) Nano-Sized Powders by Low Temperature Combustion 被引量:8
4
作者 张华山 苏春辉 +1 位作者 韩辉 侯朝霞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期304-308,共5页
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ... The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal. 展开更多
关键词 laser ceramics neodymium-doped yttrium aluminum garnet (Nd∶YAG) nano-sized powders low temperature combustion synthesis (LCS)
下载PDF
Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process 被引量:25
5
作者 Saifur Rahman Sarker Zahangir Alam +2 位作者 Rakibul Qadir M A Gafur Mohammad Moniruzzaman 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第4期429-436,共8页
A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai ... A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai and Manikgang, near the capital city, Dhaka. Alu- minum dross samples were found to approximately contain 75wt% A1203 and 12wt% SIO2. An acid dissolution process was used to recover the alumina value from the dross. The effects of various parameters, e.g., temperature, acid concentration, and leaching time, on the extrac- tion of alumina were studied to optimize the dissolution process. First, AI(OH)3 was produced in the form of a gel. Calcination of the AI(OH)3 gel at 1000℃, 1200℃, and 1400℃ for 2 h produced O-AlcOa, (t~+O)-A1203, and u-alumina powder, respectively. Thermal charac- terization of the AI(OH)3 gel was performed by thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calo- rimetry (DSC). The phases and crystallite size of the alumina were determined by X-ray diffraction analysis. The dimensions of the alumina were found to be on the nano level. The chemical compositions of the aluminum dross and alumina were determined by X-ray fluorescence (XRF) spectroscopy. The microstructure and morphology of the alumina were studied with scanning electron microscopy. The purity of the alumina extracted in this study was found to be 99.0%. Thus, it is expected that the obtained alumina powders can be potentially utilized as biomaterials. 展开更多
关键词 aluminum dross ALUMINA nanoPARTICLES acid dissolution CALCINATION X-ray fluorescence analysis
下载PDF
Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts 被引量:8
6
作者 Wenyu Zhang Shuquan Liang +2 位作者 Guozhao Fang Yongqiang Yang Jiang Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期215-226,共12页
Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain ... Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1. 展开更多
关键词 aluminum VANADATE GRAPHENE CATHODE High mass LOADING AQUEOUS zinc-ion BATTERY
下载PDF
Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles 被引量:3
7
作者 Deepak Pathania Rishu Katwal Harpreet Kaur 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第3期358-371,共14页
In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis tim... In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investi- gated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: ad- sorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation effi- ciency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation. 展开更多
关键词 aluminum oxide nanoPARTICLES electrochemical preparation PHOTOCATALYSIS
下载PDF
Electrical and Optical Properties of Nano Aluminum Film/Particle Structure 被引量:2
8
作者 孟庆云 LI Siqi +5 位作者 KANG Yixin ZHAI Xiaoyu WEI Sitao HE Huimei 王云 殷子文 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期989-993,共5页
The electrical and optical effects of particles on the nano aluminum film deposited by thermal evaporation was investigated. From the characterization results of scanning electron microscope(SEM), the accumulation i... The electrical and optical effects of particles on the nano aluminum film deposited by thermal evaporation was investigated. From the characterization results of scanning electron microscope(SEM), the accumulation in tens of nanometers had been observed. The current-voltage(I-V) curve of the sample indicates its nonlinear electrical characters expecting the corresponding nonlinear optical properties. By the theoretical calculation, nonlinear conduction of the carrier transportation may result from the barrier-well-barrier structure, where negative resistance and Coulomb blockade effect appears. The simulation results are approximately matched with the experimental results. By testing the fluorescence emission spectrum of the sample, peaks were found to be located at 420 and 440 nm. In addition, the full width at half maximum(FWHM) had been obviously broadened by means of adding 2, 5-diphenyloxazole(DPO). Therefore, discrete energy levels could be estimated inside those particles. 展开更多
关键词 nonlinear conduction properties fluorescence emission aluminum nano particle
下载PDF
Yttrium aluminum garnet (Y_3A_(l5)O_(12)) nanopowders synthesized by the chemical method 被引量:6
9
作者 ZHANGHuasha SUChunhui +2 位作者 HANHui HOUZhaoxia WANGGuangzhao 《Rare Metals》 SCIE EI CAS CSCD 2005年第2期166-169,184,共5页
The homogeneously dispersed, less agglomerated YAG nanopowders are synthesized by the citrate-gel method followed by low-temperature self-propagating combustion reaction, using Y2O3, Al(NO3)3?9H2O and citric acid as s... The homogeneously dispersed, less agglomerated YAG nanopowders are synthesized by the citrate-gel method followed by low-temperature self-propagating combustion reaction, using Y2O3, Al(NO3)3?9H2O and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and the hard ag-glomerates brought by the chemical precipitation method. The powders are characterized by TG-DTA, XRD, FT-IR and TEM respectively. The experiments show that the forming temperature of YAG crystal phase is 850°C and the pseudo-YAG crystalline appears during the calcination and transforms to pure YAG at 1050°C. The powders with sizes less than 50 nm are observed by TEM micrography, which is consistent with the result calculated by Scherrer's formula. The powders consist of single grains. 展开更多
关键词 inorganic materials yttrium aluminum garnet nanopowders citrate-gel method low temperature self-propagating combustion reaction
下载PDF
Surfactant-decorated graphite nanoplatelets(GNPs) reinforced aluminum nanocomposites: sintering effects on hardness and wear 被引量:4
10
作者 Zeeshan Baig Othman Mamat +3 位作者 Mazli Mustapha Asad Mumtaz Sadaqat Ali Mansoor Sarfraz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期704-715,共12页
The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was address... The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets(GNPs) using two types of surfactant: anionic(sodium dodecyl benzene sulfate(SDBS)) and non-ionic polymeric(ethyl cellulose(EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures(550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5 wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures. 展开更多
关键词 graphite nanoplatelets (GNPs) aluminum nanocomposites SURFACTANT HARDNESS dispersion ultra-soincation sintering effects
下载PDF
Nano-Fe_(3)O_(4)强化牛粪厌氧发酵及抗性基因削减
11
作者 习彦花 王馨芝 +4 位作者 李旭 魏帅强 孙立博 吕亚天 程辉彩 《中国环境科学》 EI CAS CSCD 北大核心 2024年第11期6250-6259,共10页
为提高牛粪高浓度厌氧发酵产气性能,考察了不同浓度纳米四氧化三铁(Nano-Fe_(3)O_(4))对底物水解及产气效率的强化效果,探究其对发酵系统中微生物群落结构变化以及抗生素抗性基因(ARGs)归趋的影响.结果表明,添加500mg/L的Nano-Fe_(3)O_... 为提高牛粪高浓度厌氧发酵产气性能,考察了不同浓度纳米四氧化三铁(Nano-Fe_(3)O_(4))对底物水解及产气效率的强化效果,探究其对发酵系统中微生物群落结构变化以及抗生素抗性基因(ARGs)归趋的影响.结果表明,添加500mg/L的Nano-Fe_(3)O_(4)可以提高牛粪高浓度厌氧发酵底物水解程度,增强系统稳定性,提高沼气产量12.36%.与对照相比,发酵系统中水解产酸菌厚壁菌门(Firmicutes)、纤维杆菌门(Fibrobacteres)的丰度分别显著增加了37.39%和75.86%.属水平上尤其是梭菌属(Clostridium)和瘤胃球菌(Ruminofilibacter)丰度是原来的3.50倍和8.69倍.产甲烷菌中甲烷八叠球菌(Methanosarcina)占主导地位,其丰度达2.55%,比对照显著增加27.50%.此外,潜在致病菌密螺旋体属(Treponema)和不动杆菌属(Acinetobacter)的丰度分别显著降低72.14%和93.69%;ARGs中四环素类(tetA、tetG、tetH、tetJ)、氨基糖苷类(aph(3)、aph(6))削减率达100%.磺胺酰胺类(sul1、sul2)平均削减率达74.41%~96.55%.研究表明添加适量的Nano-Fe_(3)O_(4)对稳定发酵系统、提高微生物活性、增加沼气产量、抗性基因削减等方面有多重促进作用,研究结果可为畜禽粪污沼气工程中Nano-Fe_(3)O_(4)等导电性外源调控添加剂的使用提供参考. 展开更多
关键词 纳米四氧化三铁 牛粪 高浓度 厌氧发酵 抗生素抗性基因
下载PDF
Influence of the Precipitating Reagents and Dispersants on the Formation Nano-Aluminum Hydroxide 被引量:1
12
作者 G. Sarsenbay L. A. Myltykbaeva +1 位作者 R. A. Abdulwalyev B. M. Sukurov 《Journal of Materials Science and Chemical Engineering》 2013年第5期11-15,共5页
The influence of the precipitating reagents and dispersants on the formation of nano-aluminum hydroxide from sodium aluminate solution by chemical precipitation was investigated. The influence of the dispersed seeds o... The influence of the precipitating reagents and dispersants on the formation of nano-aluminum hydroxide from sodium aluminate solution by chemical precipitation was investigated. The influence of the dispersed seeds on the decomposi-tion process was investigated too. The alkaline aluminate solutions were used as original solutions with a concentration of Al2O3 having 14.78 g/dm3, αk—1.6 and127 g/dm3, αk—1.6. For the precipitation processes there were used follow-ing precipitating reagents—solutions HCl, NaHCO3 and NH4HCO3 with a concentration of 80 g/dm3, dispersants—PEG 6000, (NaPO3)6 and Tween 20. For the decomposition process the dispersed seeds and factories seeds were used. Structural studies of the aluminum hydroxide particles were carried out by means of the electron-probe microanalysis and scanning electron microscopy, and phase composition of products was determined by means of X-ray diffraction analysis. Ammonium bicarbonate and Tween 20 were determined as the optimal precipitating reagent and dispersant, correspondingly, resulting in dispersed aluminum hydroxide, which is used as a seed in the decomposition process. It was established that this product in form of dispersed seed considerably reduces the duration of the decomposition process;the maximal decomposition of solution (73.9%) was observed after injection of dispersеd aluminum hydroxide into solution. The final aluminum hydroxide having 90% of particles less than 100 nanometers was obtained within 7 hours of steady decreasing temperature from 70°C to 48°C. 展开更多
关键词 nano-aluminum HYDROXIDE PRECIPITATING REAGENTS DISPERSANTS Alkaline ALUMINATE Solution Precipitation Particles Decomposition Particle Diameter
下载PDF
Nanostructured yttrium aluminum garnet powders synthesized by co-precipitation method using tetraethylenepentamine 被引量:2
13
作者 李先学 王文菊 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期967-970,共4页
Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-pre... Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-precipitation method without controlling the pH value during precipitation process.The original precursor was analyzed by thermogravimetry/differential scanning calorimetry(TG/DSC).The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by X-ray ... 展开更多
关键词 yttrium aluminum garnet powder technology CO-PRECIPITATION CERAMICS rare earths
下载PDF
Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes 被引量:9
14
作者 Jun-hui Nie Cheng-chang Jia Na Shi Ya-feng Zhang Yi Li XianJia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期695-702,共8页
To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)... To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites. 展开更多
关键词 carbon nanotubes aluminum matrix composites molybdenum layer mechanical properties electrical conductivity
下载PDF
Icephobic performance on the aluminum foil-based micro-/nanostructured surface 被引量:1
15
作者 陈宇 刘桂成 +5 位作者 姜磊 金志永 叶锋 李重基 王磊 王波 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期351-355,共5页
The research of superhydrophobic materials has attracted many researchers' attention due to its application value and prospects.In order to expand the serviceable range,people have investigated various superhydrophob... The research of superhydrophobic materials has attracted many researchers' attention due to its application value and prospects.In order to expand the serviceable range,people have investigated various superhydrophobic materials.The simple and easy preparation method has become the focus for superhydrophobic materials.In this paper,we present a program for preparing a rough surface on an aluminum foil,which possesses excellent hydrophobic properties after the treatment with low surface energy materials at high vacuum.The resulting contact angle is larger than 160° and the droplet cannot freeze on the surface above-10 ℃.Meanwhile,the modified aluminum foil with the thickness of less than 100 μm can be used as an ideal flexible applied material for superhydrophobicity/anti-icing. 展开更多
关键词 aluminum foil MICRO-nanoSTRUCTURE superhdrophobicity ANTI-ICING FLEXIBILITY
下载PDF
2024 aluminum alloy ultrahigh-strength sheet due to two-level nanostructuring under cryorolling and heat treatment 被引量:6
16
作者 Stanislav KRYMSKIY Oleg SITDIKOV +1 位作者 Elena AVTOKRATOVA Michael MARKUSHEV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期14-26,共13页
The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 alumin... The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 aluminum alloy was investigated.Using optical and electron microscopy,and X-ray analysis,it was found that the cryorolling did not qualitatively change the type of the initial coarse-fibered microstructure,but produced a well-developed nanocell substructure inside fibers.Further aging led to decomposition of the preliminary supersaturated and work-hardened aluminum solid solution and precipitation of strengthening phases in the statically recovered and/or recrystallized matrix.As a result,the rolled and naturally aged alloy demonstrated the yield and ultimate tensile strengths(YS=590 MPa,UTS=640 MPа)much higher than those in the pressed andТ6-heat treated alloy at equal elongation to failure(El^6%).Artificial aging at a temperature less than conventional T6 route could provide the extra alloy strengthening and the unique balance of mechanical properties,involving enhanced strength(YS=610 MPa,UTS=665 MPа)and ductility(El^10%),and good static crack resistance(the specific works for crack formation and growth were 42 and 18 k J/m^2,respectively)and corrosion resistance(the intensity and depth of intercrystalline corrosion were 23%and 50μm,respectively). 展开更多
关键词 aluminum alloy cryogenic rolling heat treatment nanoSTRUCTURE mechanical behavior intergranular corrosion
下载PDF
Anti-sintering behavior and combustion process of aluminum nano particles coated with PTFE:A molecular dynamics study 被引量:4
17
作者 Jun-peng Liu Hao-rui Zhang Qi-Long Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期46-57,共12页
The characteristic of easy sintering of aluminum nanoparticle(ANP)limits its application in solid propellants.Coating ANP with fluoropolymer could effectively improve its combustion performance.To find out how the coa... The characteristic of easy sintering of aluminum nanoparticle(ANP)limits its application in solid propellants.Coating ANP with fluoropolymer could effectively improve its combustion performance.To find out how the coating layer inhibits sintering and promotes complete combustion of particles from an atomic view,a comparative study has been done for bare ANP and PTFE coated ANP by using reactive molecular dynamics simulations.The sintering process is quantified by shrinkage ratio and gyration radius.Our results show that,at the same heating rate and combustion temperatures,bare ANPs are sintered together after the temperature exceeds the melting point of aluminum but the decomposition of PTFE coating layer pushes particles away and increases reaction surface area by producing small Al-F clusters.The sintering of ANPs which are heated in PTFE is alleviated compared with particles heated in oxygen,but particles still sinter together due to the lack of intimate contact between PTFE and alumina surface.The effect of temperature on the combustion of PTFE coated ANPs is also studied from 1000 to3500 K.The number density analysis shows the particles will not be sintered at any temperature.Aluminum fluoride prefers diffusing to the external space and the remained particles are mainly composed of Al,C and O.Fast ignition simulations are performed by adopting micro canonical ensemble.With the expansion of aluminum core and the melting of alumina shell,bare ANPs are sintered into a liquid particle directly.For PTFE coated ANPs,the volatilization of gaseous aluminum fluoride products continually endows particles opposite momentum. 展开更多
关键词 aluminum nanoparticle SINTERING Combustion Molecular dynamics simulation
下载PDF
Preparation and properties of graphene nanoplatelets reinforced aluminum composites 被引量:6
18
作者 Zhong ZHENG Xiao-xia YANG +3 位作者 Jian-chao LI Xue-xi ZHANG Imran MUHAMMAD Lin GENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期878-886,共9页
5.0 vol.% graphene nanoplatelets(GNPs) and aluminum powders were mixed to prepare GNPs/Al composites via high-energy ball milling(HEBM). The mixed powders were subjected to spark plasma sintering(SPS) and subsequent h... 5.0 vol.% graphene nanoplatelets(GNPs) and aluminum powders were mixed to prepare GNPs/Al composites via high-energy ball milling(HEBM). The mixed powders were subjected to spark plasma sintering(SPS) and subsequent hot extrusion. The microstructure and mechanical properties of extruded composites were investigated by X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM) and tensile tests. In the extruded composites, 5.0 vol.% GNPs were dispersed homogeneously and no serious GNP-Al interfacial reaction occurred. As a result, the yield strength and ultimate tensile strength of the extruded GNPs/Al composites reached 462 and 479 MPa, which were 62% and 60% higher than those of the extruded Al matrix, respectively. The enhanced mechanical properties were attributed to the effective load transfer capacity of dispersed GNPs. This demonstrated that it may be promising to introduce dispersed high-content GNPs via HEBM, SPS and hot extrusion techniques and GNP-Al interfacial reaction can be controlled. 展开更多
关键词 aluminum matrix composites graphene nano-platelets powder metallurgy interface microstructure mechanical properties
下载PDF
TPU/Nano-ZnO复合改性沥青的性能研究及微观机制
19
作者 田小革 李光耀 +4 位作者 陈功 姚世林 黄雪梅 王俊杰 陆劲州 《材料导报》 EI CAS CSCD 北大核心 2024年第16期98-107,共10页
为促进聚合物/纳米改性沥青在耐久性路面中的应用,在实验室将不同掺量的聚氨酯及纳米氧化锌添加到A-70#基质沥青中制备了复合改性沥青。采用传统物理性能试验、动态剪切流变试验(DSR)、弯曲梁流变试验(BBR)研究了其物理性能与流变特性,... 为促进聚合物/纳米改性沥青在耐久性路面中的应用,在实验室将不同掺量的聚氨酯及纳米氧化锌添加到A-70#基质沥青中制备了复合改性沥青。采用传统物理性能试验、动态剪切流变试验(DSR)、弯曲梁流变试验(BBR)研究了其物理性能与流变特性,基于响应面法的优化设计来明确两种改性剂的最佳掺量。借助傅里叶红外光谱试验(FTIR)对其微观改性机理进行探讨。采用高压紫外汞灯环境箱对改性沥青进行不同时间的紫外老化,分析其抗紫外老化能力,并基于主成分分析法评价了老化性能测试指标的显著性。结果表明:聚氨酯与纳米氧化锌的共同作用提高了基质沥青的高温稳定性及低温抗裂性,两种改性剂的最佳掺量分别为5%、3%。根据FTIR结果,复合改性沥青的改性过程既存在物理共混,又有化学加成反应。聚氨酯及纳米氧化锌的加入在基质沥青紫外老化过程中能够抑制羰基、亚砜基等极性基团的生成,复数剪切模量、羰基指数、劲度模量及亚砜基指数对沥青紫外老化性能的影响最为显著。 展开更多
关键词 聚氨酯 纳米氧化锌 复合改性沥青 宏观性能 微观机理
下载PDF
Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering 被引量:5
20
作者 Hui-min Xia Lan Zhang +4 位作者 Yong-chao Zhu Na Li Yu-qi Sun Ji-dong Zhang Hui-zhong Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1295-1300,共6页
A 0.3wt%graphene nanoplatelets(GNPs)reinforced 7075 aluminum alloy matrix(7075 Al)composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated.The microstructures of the in... A 0.3wt%graphene nanoplatelets(GNPs)reinforced 7075 aluminum alloy matrix(7075 Al)composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated.The microstructures of the internal structure,the friction surface,and the wear debris were characterized by scanning electron microscopy,X-ray diffraction,and Raman spectroscopy.Compared with the original 7075 aluminum alloy,the hardness and elastic modulus of the 7075 Al/GNPs composite were found to have increased by 29%and 36%,respectively.The results of tribological experiments indicated that the composite also exhibited a lower wear rate than the original 7075 aluminum alloy. 展开更多
关键词 7075 aluminum alloy graphene nanoplatelets spark plasma sintering STRENGTH wear resistance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部