It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeabili...It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeability artificial rocks with the permeability of 0.1–40 mD by adopting silica sol imbibition grouting.The variation characteristics of particle size,viscosity,and contact angle of silica sol during solidification and the pore size distribution of low-permeability artificial rocks were measured,and spontaneous imbibition tests of the artificial rocks were carried out.Finally,combined with the imbibition theory,percolation theory,and fracture medium grouting principle,the silica sol imbibition mechanism of lowpermeability rocks and soil was discussed.The results show that:(1)Silica sol can be injected into artificial rocks with the minimum permeability of 0.1 mD through spontaneous imbibition;(2)The particle size increase of silica sol leads to decreased wettability,affinity,and injectability in grouting materials;and(3)In the range of 0.1–40 mD,the grout absorption first increases and then decreases with increased permeability.The number of large pores and fractures in the rock mass is related to injectability,and the number of small and medium pores is related to the internal driving force of imbibition.This study provides a theoretical basis for silica sol grouting sealing of low-permeability argillaceous rocks and is,therefore,an important reference for application.展开更多
A few hundreds nanometer-sized mesoporous silica and alumina spheres were synthesized in organic solvents. The impacts of ammonia, N, N-dimethylformamide (DMF) and stirring speed were also investigated.
The synthesis and characterization of a novel macroporous silica derived size exclusion chromatography (SEC) packing for quantitative analysis of high molecular weight (MW) polyacrylamide (PAM) are presented. Us...The synthesis and characterization of a novel macroporous silica derived size exclusion chromatography (SEC) packing for quantitative analysis of high molecular weight (MW) polyacrylamide (PAM) are presented. Using this packing, a fast, sensitive and reproducible approach for quantitation of super high-MW PAM in demanding enhanced oil recovery (EOR) waters was developed and the effect of synthesis parameters on the properties of resultant materials was investigated. These parameters include salt addition, reaction temperature and duration, activation condition of functional groups on the silica surface, as well as the reaction cycles required for optimal silica modification. Moreover, SEC analysis conditions, such as mobile phase composition, flow rate, detection and sample preparation, were also explored and an optimal analysis protocol was developed. Under this optimized SEC analysis conditions, the synthesized macroporous materials proved satisfactory for quantification of PAM with average MW up to 22 million Daltons. An SEC analysis required less than few minutes with a detection limit of 1 ng, a linear response range of 0.1 to 75 mg/L with squared R value of 0.99 and reproducibility better than 9.2% RSD (relative standard deviation). The analysis of PAM in highly saline oilfield production water containing interfering high MW polymeric surfactants indicated the recovery ranges from 92.5% to 110.1% for 1.0 mg/L PAM and 94.2% to 103.8% for 50 mg/L PAM solution. This study presented for the ftrst time that the reliable quantization of high MW PAM in highly demanding EOR waters can be achieved by SEC.展开更多
In this paper,the effects of four sorts of silica with the particle size range of 4~10μm on coated paper properties and printing performance were studied.The results showed that the smaller particle size silica can ...In this paper,the effects of four sorts of silica with the particle size range of 4~10μm on coated paper properties and printing performance were studied.The results showed that the smaller particle size silica can provide the coated paper with higher density and contrast, better definition and good printing performance.展开更多
The structural and morphological properties of mesoporous silica nanoparticles( MSNs) have dramatical influence on their in vivo biological behaviors,and thereby synthesis of MSNs with well-defined shape and size has ...The structural and morphological properties of mesoporous silica nanoparticles( MSNs) have dramatical influence on their in vivo biological behaviors,and thereby synthesis of MSNs with well-defined shape and size has recently attracted much more attention in the biomedical field. The synthesis of MSNs with controllable size and shape was presented by controlling the reaction temperature and the concentration of templating agent(cetyltrimethylammonium bromide,CTAB). The results indicated that MSNs were larger in particle size and more round in shape with increasing of the reaction temperature,but their particle size and dispersivity became smaller and poorer as CTAB concentration increased. Therefore,the particle size and shape of MSNs can be tuned by using the optimal synthesis conditions for specific biomedical applications.展开更多
Highly porous silica ceramics with different pore sizes were fabricated by adjusting the mixed surfactants addition.The effect of the pore size on the cold compressive strength and the thermal conductivity of the cera...Highly porous silica ceramics with different pore sizes were fabricated by adjusting the mixed surfactants addition.The effect of the pore size on the cold compressive strength and the thermal conductivity of the ceramics was researched.The results show that the smaller pore size can improve the compressive strength and the thermal conductivity.With the mixed surfactants addition increasing from 0.1 mass%to 0.4 mass%,the porosity is close,in the range of 88.10%-88.31%,and the average pore size decreases from 190μm to 97μm;the compressive strength is enhanced from 2.97 MPa to 3.55 MPa;and the thermal conductivity decreases from 0.104 W·m-1·K-1 to 0.089 W·m-1·K-1.展开更多
Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic...Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic mesoporous silica(FDU-12) as a function of pore entrance size.Simple adjustments to the type of organic template and reaction temperature enable the successful synthesis of FDU-12 with controllable entrance sizes( 3,3-5 and 7 nm).Excellent anti-sintering properties are observed for FDU-12 with a sub-5-nm entrance size(3-5 nm) over a wide loading concentration(1.0-8.3 wt%) and the AuNPs can be stabilized within a 4.5-5.0-nm range after calcination at 550 ℃in air for 5 h.Smaller entrance size( 3 nm) prevents ingress of 3-nm AuNPs to the mesopores and results in low loading capacity and sintering.Conversely,FDU-12 possessing a larger entrance size(7 nm) shows promising anti-sintering properties at high loading concentrations,although catalytic performance is significantly lost at lower concentrations(e.g.2.1 wt%,14.2 ± 5.5 nm).Different anti-sintering mechanisms are proposed for each of the different FDU-12 entrance sizes.Additionally,catalytic data indicates that the obtained 4.5-nm AuNPs supported on FDU-12 with a sub-5-nm entrance size exhibit excellent mass-specific activity(1544 mmol g_(Au)^(-1) h^(-1)) and selectivity( 99%)at 230 ℃ for the gas-phase selective oxidation of cyclohexanol.展开更多
Mesoporous silica supported Cs2.5H0.5PW12O40 catalysts were prepared by impregnation method, and several silica supports with different pore size were utilized. N2 adsorption, XRD and ICP-AES techniques were utilized ...Mesoporous silica supported Cs2.5H0.5PW12O40 catalysts were prepared by impregnation method, and several silica supports with different pore size were utilized. N2 adsorption, XRD and ICP-AES techniques were utilized to characterize the silica supports and catalysts. XRD results showed that the dispersion of Cs2.5H0.5PW12 was better for the silica support with larger pore size. The catalytic activity results showed that the pore size played important role on the catalyst activity and the molecular weight of PTHF. When Cs2.5H0.5PW12O40 was dispersed on larger pore size silica support, the catalysts showed good performances for the synthesis of PTHE The molecular weight of PTHF product on the sample in which Cs2.5H0.5PW12O40 was dispersed on larger pore support was higher than that on the catalyst with smaller pore support. The leaching amounts of the active components for the supported Cs2.5H0.5PW12O40 catalysts were much lower. After five reaction cycles, there were still good activities and stabilities for the supported Cs2.5H0.5PW12O40 catalysts with larger pore silica supports. These results were much better than those of the supported heteropolyacid H3PW12O40 catalyst.展开更多
The present work presents the microstructure of β-Ca_2SiO_4(β-C_2S) after accelerated carbonation. The synthesis procedure of β-C_2S was examined first, and the crystalline and amorphous structure, the distribution...The present work presents the microstructure of β-Ca_2SiO_4(β-C_2S) after accelerated carbonation. The synthesis procedure of β-C_2S was examined first, and the crystalline and amorphous structure, the distribution and the pore structure of β-C_2S carbonation products were also determined by X-ray diffraction(XRD) quantitative analysis, simultaneous thermal analyzer(TG/DTA), Fourier transform-infrared spectroscopy(FT-IR), high resolution ^(29)Si magic angle spinning nuclear magnetic resonance(^(29)Si NMR), N_2-sorption techniques, and scanning electron microscopy(SEM), respectively. Test results indicate that carbonation products are dramatically formed in the initial 2 h. The main carbonation products are crystalline calcite and amorphous three-dimensional network silica gels, which contain nanometer-sized pores. The calcite, silica gels and un-carbonated β-C_2S are distributed hierarchically.展开更多
A calculation method for predicting the formation of alkali-silica gel and analyzing the relationship of ASR induced expansion and aggregate size was proposed. The complicated chemistry of alkali silica reaction was s...A calculation method for predicting the formation of alkali-silica gel and analyzing the relationship of ASR induced expansion and aggregate size was proposed. The complicated chemistry of alkali silica reaction was simplified to be controlled by the diffusion process of chemical ions into reactive aggregates. The transport of chemical ions was described by the Fick's law. The ASR induced expansion was assumed to be directly related to the volume of produced alkali-silica gel. The finally expansion of a representative volume element (RVE) of concrete was then calculated according to the ratio of volume of alkali-silica gel and RVE. The input parameters of the model contains radius of reactive aggregate, volume fraction of reactive aggregate, initial concentration of chemical ions and porosity of cement paste. The applicability of the model was validated by an experiment of ASR-affected concrete specimens containing glass aggregate. It is shown that the amount of alkali-silica gel and ASR induced expansion can be well predicted. The expansion increasing with the decreasing aggregate size can be reproduced by the proposed model.展开更多
Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large me...Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large mesopores. The structure of synthesized samples were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption-desorption measurements. The experimental results show that bimodal mesoporous silica consists of small mesopores of about 3 nm and large mesopores of about 45 nm. The small mesopores which were formed on the external surface and pore walls of the silica gel had similar characters with those of MCM-41, while large mesopores were inherited from parent silica gel material. The pore size distribution of the synthesized silica can be adjusted by changing the relative content of TEOS and silica gel or the feeding sequence of silica gel and NH4OH.展开更多
Effects of flame temperature and SiCl4 concentration on the particle characteristics were studied.The flame temperature distributions were measured using modified sodium line-reversal technology.The particles were col...Effects of flame temperature and SiCl4 concentration on the particle characteristics were studied.The flame temperature distributions were measured using modified sodium line-reversal technology.The particles were collected by quartz supports and were analyzed by scanning electron microscope(SEM) at different locations along the flame centerline.When the SiCl4 concentration is 16 g/min,the particles first grow and then shrink with the flame temperature increasing.When the SiCl4 concentration is 26 g/min,the flame temperature has little influence on the particle characteristics along the flame and many large spherical particles exist all the way.展开更多
A new industrial method has been developed to produce polydisperse spherical colloidal silica particles with a very broad particle size,ranging from 20-95 nm.The process uses a reactor in which the original seed solut...A new industrial method has been developed to produce polydisperse spherical colloidal silica particles with a very broad particle size,ranging from 20-95 nm.The process uses a reactor in which the original seed solution is heated to 100 ℃,and then active silicic acid and the seed solution are titrated to the reactor continuously with a constant rate.The original seeds and the titrated seeds in the reactor will go through different particle growth cycles to form different particle sizes.Both the particles' size distribution and morphology have been characterized by dynamic light scattering(DLS)and the focus ion beam(FIB) system.In addition,the as-prepared polydisperse colloidal silica particle in the application of sapphire wafer's chemical mechanical polishing(CMP) process has been tested.The material removal rate(MRR) of this kind of abrasive has been tested and verified to be much faster than traditional monodisperse silica particles.Finally,the mechanism of sapphire CMP process by this kind of polydisperse silica particles has been investigated to explore the reasons for the high polishing rate.展开更多
基金This work was supported by National Natural Science Foundation of China(Nos.52034007,52074263,52108365 and 52104104)the Post-graduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX21_2340).
文摘It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeability artificial rocks with the permeability of 0.1–40 mD by adopting silica sol imbibition grouting.The variation characteristics of particle size,viscosity,and contact angle of silica sol during solidification and the pore size distribution of low-permeability artificial rocks were measured,and spontaneous imbibition tests of the artificial rocks were carried out.Finally,combined with the imbibition theory,percolation theory,and fracture medium grouting principle,the silica sol imbibition mechanism of lowpermeability rocks and soil was discussed.The results show that:(1)Silica sol can be injected into artificial rocks with the minimum permeability of 0.1 mD through spontaneous imbibition;(2)The particle size increase of silica sol leads to decreased wettability,affinity,and injectability in grouting materials;and(3)In the range of 0.1–40 mD,the grout absorption first increases and then decreases with increased permeability.The number of large pores and fractures in the rock mass is related to injectability,and the number of small and medium pores is related to the internal driving force of imbibition.This study provides a theoretical basis for silica sol grouting sealing of low-permeability argillaceous rocks and is,therefore,an important reference for application.
基金the National Natural Science Foundation of China(Grant No. 29873012, 29925309) and National Ed-ucation Ministry.
文摘A few hundreds nanometer-sized mesoporous silica and alumina spheres were synthesized in organic solvents. The impacts of ammonia, N, N-dimethylformamide (DMF) and stirring speed were also investigated.
文摘The synthesis and characterization of a novel macroporous silica derived size exclusion chromatography (SEC) packing for quantitative analysis of high molecular weight (MW) polyacrylamide (PAM) are presented. Using this packing, a fast, sensitive and reproducible approach for quantitation of super high-MW PAM in demanding enhanced oil recovery (EOR) waters was developed and the effect of synthesis parameters on the properties of resultant materials was investigated. These parameters include salt addition, reaction temperature and duration, activation condition of functional groups on the silica surface, as well as the reaction cycles required for optimal silica modification. Moreover, SEC analysis conditions, such as mobile phase composition, flow rate, detection and sample preparation, were also explored and an optimal analysis protocol was developed. Under this optimized SEC analysis conditions, the synthesized macroporous materials proved satisfactory for quantification of PAM with average MW up to 22 million Daltons. An SEC analysis required less than few minutes with a detection limit of 1 ng, a linear response range of 0.1 to 75 mg/L with squared R value of 0.99 and reproducibility better than 9.2% RSD (relative standard deviation). The analysis of PAM in highly saline oilfield production water containing interfering high MW polymeric surfactants indicated the recovery ranges from 92.5% to 110.1% for 1.0 mg/L PAM and 94.2% to 103.8% for 50 mg/L PAM solution. This study presented for the ftrst time that the reliable quantization of high MW PAM in highly demanding EOR waters can be achieved by SEC.
文摘In this paper,the effects of four sorts of silica with the particle size range of 4~10μm on coated paper properties and printing performance were studied.The results showed that the smaller particle size silica can provide the coated paper with higher density and contrast, better definition and good printing performance.
基金National Natural Science Foundation of China(No.31271028)Shanghai Natural Science Foundation,China(No.11ZR1400100)+5 种基金Shanghai Nano Science Program,China(No.11nm0505500)Innovation Program of Shanghai Municipal Education Commission,China(No.13ZZ051)Fundamental Research Funds for the Central Universities,ChinaOpen Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,China(No.LK1202)Chinese Universities Scientific Fund(No.13D310608)the Scientific Research Foundation for Returned Scholars,Ministry of Education of China
文摘The structural and morphological properties of mesoporous silica nanoparticles( MSNs) have dramatical influence on their in vivo biological behaviors,and thereby synthesis of MSNs with well-defined shape and size has recently attracted much more attention in the biomedical field. The synthesis of MSNs with controllable size and shape was presented by controlling the reaction temperature and the concentration of templating agent(cetyltrimethylammonium bromide,CTAB). The results indicated that MSNs were larger in particle size and more round in shape with increasing of the reaction temperature,but their particle size and dispersivity became smaller and poorer as CTAB concentration increased. Therefore,the particle size and shape of MSNs can be tuned by using the optimal synthesis conditions for specific biomedical applications.
基金This work was supported by National Key Research and Development Program of China(Grant No.2017YFB0406203,No.2017YFB0703200,and No.2017YFB0306500)National Natural Science Foundation of China(Grant No.51302290 and No.51501215)。
文摘Highly porous silica ceramics with different pore sizes were fabricated by adjusting the mixed surfactants addition.The effect of the pore size on the cold compressive strength and the thermal conductivity of the ceramics was researched.The results show that the smaller pore size can improve the compressive strength and the thermal conductivity.With the mixed surfactants addition increasing from 0.1 mass%to 0.4 mass%,the porosity is close,in the range of 88.10%-88.31%,and the average pore size decreases from 190μm to 97μm;the compressive strength is enhanced from 2.97 MPa to 3.55 MPa;and the thermal conductivity decreases from 0.104 W·m-1·K-1 to 0.089 W·m-1·K-1.
基金supported by the National Natural Science Foundation of China(21222307,21373181,21403197,91545113,21503189)the Fundamental Research Funds for the Central Universities(2014XZZX003-02)+1 种基金Zhejiang Provincial Natural Science Foundation(LY15B030009)China Postdoctoral Science Foundation(2014M550333,2015T80636)~~
文摘Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic mesoporous silica(FDU-12) as a function of pore entrance size.Simple adjustments to the type of organic template and reaction temperature enable the successful synthesis of FDU-12 with controllable entrance sizes( 3,3-5 and 7 nm).Excellent anti-sintering properties are observed for FDU-12 with a sub-5-nm entrance size(3-5 nm) over a wide loading concentration(1.0-8.3 wt%) and the AuNPs can be stabilized within a 4.5-5.0-nm range after calcination at 550 ℃in air for 5 h.Smaller entrance size( 3 nm) prevents ingress of 3-nm AuNPs to the mesopores and results in low loading capacity and sintering.Conversely,FDU-12 possessing a larger entrance size(7 nm) shows promising anti-sintering properties at high loading concentrations,although catalytic performance is significantly lost at lower concentrations(e.g.2.1 wt%,14.2 ± 5.5 nm).Different anti-sintering mechanisms are proposed for each of the different FDU-12 entrance sizes.Additionally,catalytic data indicates that the obtained 4.5-nm AuNPs supported on FDU-12 with a sub-5-nm entrance size exhibit excellent mass-specific activity(1544 mmol g_(Au)^(-1) h^(-1)) and selectivity( 99%)at 230 ℃ for the gas-phase selective oxidation of cyclohexanol.
基金supported by the National Natural Science Foundation of China(No.20776089)
文摘Mesoporous silica supported Cs2.5H0.5PW12O40 catalysts were prepared by impregnation method, and several silica supports with different pore size were utilized. N2 adsorption, XRD and ICP-AES techniques were utilized to characterize the silica supports and catalysts. XRD results showed that the dispersion of Cs2.5H0.5PW12 was better for the silica support with larger pore size. The catalytic activity results showed that the pore size played important role on the catalyst activity and the molecular weight of PTHF. When Cs2.5H0.5PW12O40 was dispersed on larger pore size silica support, the catalysts showed good performances for the synthesis of PTHE The molecular weight of PTHF product on the sample in which Cs2.5H0.5PW12O40 was dispersed on larger pore support was higher than that on the catalyst with smaller pore support. The leaching amounts of the active components for the supported Cs2.5H0.5PW12O40 catalysts were much lower. After five reaction cycles, there were still good activities and stabilities for the supported Cs2.5H0.5PW12O40 catalysts with larger pore silica supports. These results were much better than those of the supported heteropolyacid H3PW12O40 catalyst.
基金Funded by the National Natural Science Foundation of China(Nos.51272068,U1604118,and 51502080)
文摘The present work presents the microstructure of β-Ca_2SiO_4(β-C_2S) after accelerated carbonation. The synthesis procedure of β-C_2S was examined first, and the crystalline and amorphous structure, the distribution and the pore structure of β-C_2S carbonation products were also determined by X-ray diffraction(XRD) quantitative analysis, simultaneous thermal analyzer(TG/DTA), Fourier transform-infrared spectroscopy(FT-IR), high resolution ^(29)Si magic angle spinning nuclear magnetic resonance(^(29)Si NMR), N_2-sorption techniques, and scanning electron microscopy(SEM), respectively. Test results indicate that carbonation products are dramatically formed in the initial 2 h. The main carbonation products are crystalline calcite and amorphous three-dimensional network silica gels, which contain nanometer-sized pores. The calcite, silica gels and un-carbonated β-C_2S are distributed hierarchically.
基金Funded by the Major state Basic Research Development Program of China (973 Program) (No. 2009CB623203)
文摘A calculation method for predicting the formation of alkali-silica gel and analyzing the relationship of ASR induced expansion and aggregate size was proposed. The complicated chemistry of alkali silica reaction was simplified to be controlled by the diffusion process of chemical ions into reactive aggregates. The transport of chemical ions was described by the Fick's law. The ASR induced expansion was assumed to be directly related to the volume of produced alkali-silica gel. The finally expansion of a representative volume element (RVE) of concrete was then calculated according to the ratio of volume of alkali-silica gel and RVE. The input parameters of the model contains radius of reactive aggregate, volume fraction of reactive aggregate, initial concentration of chemical ions and porosity of cement paste. The applicability of the model was validated by an experiment of ASR-affected concrete specimens containing glass aggregate. It is shown that the amount of alkali-silica gel and ASR induced expansion can be well predicted. The expansion increasing with the decreasing aggregate size can be reproduced by the proposed model.
基金Funded by the National Natural Science Foundation of China (No. 20876113)
文摘Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large mesopores. The structure of synthesized samples were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption-desorption measurements. The experimental results show that bimodal mesoporous silica consists of small mesopores of about 3 nm and large mesopores of about 45 nm. The small mesopores which were formed on the external surface and pore walls of the silica gel had similar characters with those of MCM-41, while large mesopores were inherited from parent silica gel material. The pore size distribution of the synthesized silica can be adjusted by changing the relative content of TEOS and silica gel or the feeding sequence of silica gel and NH4OH.
文摘Effects of flame temperature and SiCl4 concentration on the particle characteristics were studied.The flame temperature distributions were measured using modified sodium line-reversal technology.The particles were collected by quartz supports and were analyzed by scanning electron microscope(SEM) at different locations along the flame centerline.When the SiCl4 concentration is 16 g/min,the particles first grow and then shrink with the flame temperature increasing.When the SiCl4 concentration is 26 g/min,the flame temperature has little influence on the particle characteristics along the flame and many large spherical particles exist all the way.
基金Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China(Grant No.2009ZX02030-1)the National Natural Science Foundation of China(Grant No.51205387)the Science and Technology Commission of Shanghai,China(Grant No. 11nm0500300),and the Science and Technology Commission of Shanghai,China(Grant No. 14XD1425300)
文摘A new industrial method has been developed to produce polydisperse spherical colloidal silica particles with a very broad particle size,ranging from 20-95 nm.The process uses a reactor in which the original seed solution is heated to 100 ℃,and then active silicic acid and the seed solution are titrated to the reactor continuously with a constant rate.The original seeds and the titrated seeds in the reactor will go through different particle growth cycles to form different particle sizes.Both the particles' size distribution and morphology have been characterized by dynamic light scattering(DLS)and the focus ion beam(FIB) system.In addition,the as-prepared polydisperse colloidal silica particle in the application of sapphire wafer's chemical mechanical polishing(CMP) process has been tested.The material removal rate(MRR) of this kind of abrasive has been tested and verified to be much faster than traditional monodisperse silica particles.Finally,the mechanism of sapphire CMP process by this kind of polydisperse silica particles has been investigated to explore the reasons for the high polishing rate.