The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and ch...The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-? converting enzyme(ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-Iinhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC_(50) of 5.75 μmol L^(-1). The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.展开更多
Xiao-Xu-Ming decoction has been widely used to treat stroke and sequelae of stroke. We have previously shown that the active fractions of Xiao-Xu-Ming decoction attenuate cerebral ischemic injury. However, the global ...Xiao-Xu-Ming decoction has been widely used to treat stroke and sequelae of stroke. We have previously shown that the active fractions of Xiao-Xu-Ming decoction attenuate cerebral ischemic injury. However, the global protein profile and signaling conduction pathways regulated by Xiao-Xu-Ming decoction are still unclear. This study established a two-vessel occlusion rat model by bilateral common carotid artery occlusion. Rats were intragastrically administered 50 or 150 mg/kg Xiao-Xu-Ming decoction for 4 consecutive weeks. Learning and memory abilities were measured with Morris water maze. Motor ability was detected with prehensile test. Coordination ability was examined using the inclined screen test. Neuronal plasticity was observed by immunofluorescent staining. Differentially expressed proteins of rat hippocampus were analyzed by label-free quantitative proteomics. Real time-polymerase chain reaction and western blot assay were used to identify the changes in proteins. Results showed that Xiao-Xu-Ming decoction dramatically alleviated learning and memory deficits, and motor and coordination dysfunction, and increased the expression of microtubule-associated protein 2. Xiao-Xu-Ming decoction extract remarkably decreased 13 upregulated proteins and increased 39 downregulated proteins. The regulated proteins were mainly involved in oxidation reduction process, intracellular signaling cascade process, and protein catabolic process. The signaling pathways were mainly involved in ubiquitin mediated proteolysis and the phosphatidylinositol signaling system. Furthermore, there was an interaction among Rab2 a, Ptpn1, Ppm1 e, Cdk18, Gorasp2, Eps15, Capza2, Syngap1 and Mt-nd1. Protein analyses confirmed the changes in expression of MTND1. The current findings provide new insights into the molecular mechanisms of Xiao-Xu-Ming decoction extract's effects on chronic cerebral hypoperfusion.展开更多
基金supported by the Public Science and Technology Research Funds (Projects of Ocean)State Ocean Administration of P. R. China (Nos. 201305007 and 201405017)+3 种基金National High Technology Research and Development Program of China (No. 2013AA093003)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Jiangsu Qinglan ProjectJiangsu 333 Project
文摘The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-? converting enzyme(ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-Iinhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC_(50) of 5.75 μmol L^(-1). The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.
基金supported in part by the National Natural Science Foundation of China,No.81473383(to YHW)the Significant New-Drugs Creation of Science and Technology Major Projects in China,No.2018ZX09711001-003-019(to YHW)the Innovation Fund for Graduate of Beijing Union Medical College of China,No.2017-1007-02(to XC)
文摘Xiao-Xu-Ming decoction has been widely used to treat stroke and sequelae of stroke. We have previously shown that the active fractions of Xiao-Xu-Ming decoction attenuate cerebral ischemic injury. However, the global protein profile and signaling conduction pathways regulated by Xiao-Xu-Ming decoction are still unclear. This study established a two-vessel occlusion rat model by bilateral common carotid artery occlusion. Rats were intragastrically administered 50 or 150 mg/kg Xiao-Xu-Ming decoction for 4 consecutive weeks. Learning and memory abilities were measured with Morris water maze. Motor ability was detected with prehensile test. Coordination ability was examined using the inclined screen test. Neuronal plasticity was observed by immunofluorescent staining. Differentially expressed proteins of rat hippocampus were analyzed by label-free quantitative proteomics. Real time-polymerase chain reaction and western blot assay were used to identify the changes in proteins. Results showed that Xiao-Xu-Ming decoction dramatically alleviated learning and memory deficits, and motor and coordination dysfunction, and increased the expression of microtubule-associated protein 2. Xiao-Xu-Ming decoction extract remarkably decreased 13 upregulated proteins and increased 39 downregulated proteins. The regulated proteins were mainly involved in oxidation reduction process, intracellular signaling cascade process, and protein catabolic process. The signaling pathways were mainly involved in ubiquitin mediated proteolysis and the phosphatidylinositol signaling system. Furthermore, there was an interaction among Rab2 a, Ptpn1, Ppm1 e, Cdk18, Gorasp2, Eps15, Capza2, Syngap1 and Mt-nd1. Protein analyses confirmed the changes in expression of MTND1. The current findings provide new insights into the molecular mechanisms of Xiao-Xu-Ming decoction extract's effects on chronic cerebral hypoperfusion.