A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and t...A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and test specimen.The test structure is capable of producing large displacement and stresswhile keeping a relatively low temperature gradient across the test specimen.A voltage is applied across the beams of the chevron-shaped actuator,producing thermal expansion force to fracture the test specimen.Actuator deflection is computed based on elastic analysis of structures.To verify the test structure,simulations have been implemented using COMSOL Multiphysics.A 620μmlong,410μm wide,10μm thick test structure produced stress of 7.1 GPawhile the applied voltage is 5 V.The results indicate that the test structure is suitable for in-situ measurement of the fracture strength of MEMS thin films.展开更多
A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimens...A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.展开更多
Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its p...Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same.展开更多
A novel capacitive microwave MEMS switch with a silicon/metal/dielectric as a membrane is fabricated successfully by bonding and etching-stop process. Its principal, design, and fabricating process are described in de...A novel capacitive microwave MEMS switch with a silicon/metal/dielectric as a membrane is fabricated successfully by bonding and etching-stop process. Its principal, design, and fabricating process are described in detail. A patterned dielectric layer, Ta2O5, with dielectric constant of 24 is reached. Experiment results show this novel structure,where the switch's dielectric layer is not prepared on the transmission line, features very low insertion loss. The insertion loss is 0.06dB at 2GHz and lower than 0.5dB in the wider range from De up to 20GHz,especially when the transmission line metal is only 0. 5μm thick.展开更多
The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its l...The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its large volume and mass. But, many properties of MEMS switch, such as sensitivity, resolution and contact time, are affected by the air damping caused from the squeezed air film between two parallel plates moving relatively. Based on the conservation laws for mass and flux and the nonlinear Reynolds equation, the coefficient of squeeze-film damping was derived. The dynamic responses of the inertial switch with and without squeeze-film damping were simulated by using software ANSYS. The simulated results show that the sensitivity and contact time of the switch descend by about 5% and 15%, respectively, when the effects of squeeze-film damping are considered.展开更多
RF MEMS开关加工工序多,过程复杂,加工难度较大,影响开关加工质量的因素众多。从工艺流程入手,对加工过程中的牺牲层平坦化、牺牲层释放、薄膜微桥厚度及均匀性控制、薄膜微桥应力处理等关键技术和重要影响因素进行了分析。研制的20-40 ...RF MEMS开关加工工序多,过程复杂,加工难度较大,影响开关加工质量的因素众多。从工艺流程入手,对加工过程中的牺牲层平坦化、牺牲层释放、薄膜微桥厚度及均匀性控制、薄膜微桥应力处理等关键技术和重要影响因素进行了分析。研制的20-40 GHz RF MEMS开关,其插入损耗≤0.4 d B,回波损耗≤-20 d B,隔离度≥20 d B,驱动电压50-100 V,热切换寿命≥106次。展开更多
在柔性LCP基板上制备RF MEMS开关,加工难度较大,影响开关质量的因素较多。主要研究影响LCP基RF MEMS开关加工质量的主要因素,寻找工艺过程控制解决方案。通过对关键工序的试验,对加工过程中的基板清洗、LCP基板覆铜面镀涂及整平、LCP基...在柔性LCP基板上制备RF MEMS开关,加工难度较大,影响开关质量的因素较多。主要研究影响LCP基RF MEMS开关加工质量的主要因素,寻找工艺过程控制解决方案。通过对关键工序的试验,对加工过程中的基板清洗、LCP基板覆铜面镀涂及整平、LCP基板无铜面溅射金属膜层、LCP基板平整度保持、二氧化硅膜层生长及图形化、牺牲层加工、薄膜微桥加工、牺牲层释放等工序进行了参数优化。研制的LCP基RF MEMS开关样件频率≤20 GHz、插入损耗≤0.5 d B,回波损耗≤-20 d B,隔离度≥20 d B,驱动电压30~50 V。该加工方法对柔性基板上可动结构的制造具有一定的借鉴价值。展开更多
This paper reports on the fabrication and sensing characteristics of Polyimide-based humidity sensor,based on that,a new integrated circuit of humidity measurement has been designed.It is a novel capacitive-type syste...This paper reports on the fabrication and sensing characteristics of Polyimide-based humidity sensor,based on that,a new integrated circuit of humidity measurement has been designed.It is a novel capacitive-type systems on a chip structure using the MEMS process.The results show that the new sensor presents sensing characteristics over a humidity range from 10%~70% RH at 20℃,and the sensor is able to fabricated together with ICs technology.The result shows that integration of humidity sensor with integrated circuit of humidity measurement is considerably easier when they are built in sensing groove.The appeal of a new structure like this brings the possibility of applications that would require the flexibility of simple screen printing.展开更多
Diamond-like carbon (DLC) films have recently been pursued as the protection of MEMS against their friction and wear.Plasma enhanced chemical vapor deposition (PECVD) technique is very attractive to prepare DLC coatin...Diamond-like carbon (DLC) films have recently been pursued as the protection of MEMS against their friction and wear.Plasma enhanced chemical vapor deposition (PECVD) technique is very attractive to prepare DLC coating for MEMS.This paper describes the preparation of DLC films using twinned electron cyclotron resonance (ECR) microwave PECVD process.Raman spectra confirmed the DLC characteristics of the films.Fourier-transform infrared (FT-IR)characterization indicates the carbon is bonded in the form sp~3 and sp~2 with hydrogen participating in bonding.The surface roughness of the films is as low as approximately (0.093)nm measured with an atomic force microscope.A CERT microtribometer system is employed to obtain information about the scratch resistance,friction properties,and sliding wear resistance of the films.The results show the deposited DLC films have low friction and good scratch/wear resistance properties.展开更多
This paper presents the design and fabrication of a Lamb wave device based on ZnO piezoelectric film. The Lamb waves were respectively launched and received by both Al interdigital transducers.In order to reduce the s...This paper presents the design and fabrication of a Lamb wave device based on ZnO piezoelectric film. The Lamb waves were respectively launched and received by both Al interdigital transducers.In order to reduce the stress of the thin membrane,the ZnO/Al/LTO/Si;N;/Si multilayered thin plate was designed and fabricated.A novel method to obtain the piezoelectric constant of the ZnO film was used.The experimental results for characterizing the wave propagation modes and their frequencies of the Lamb wave device indicated that the measured center frequency of antisymmetric A;and symmetric S;modes Lamb wave agree with the theoretical predictions.The mass sensitivity of the MEMS Lamb wave device was also characterized for gravimetric sensing application.展开更多
基金supported by the National High Technology Program of P. R. China under Grant No. 2015AA042604
文摘A novel test structure to characterize the fracture strength of MEMS(Micro-electro-Mechanical Systems)thin films is presented.The test structure is comprised of a micro fabricated chevron-shaped thermal actuator and test specimen.The test structure is capable of producing large displacement and stresswhile keeping a relatively low temperature gradient across the test specimen.A voltage is applied across the beams of the chevron-shaped actuator,producing thermal expansion force to fracture the test specimen.Actuator deflection is computed based on elastic analysis of structures.To verify the test structure,simulations have been implemented using COMSOL Multiphysics.A 620μmlong,410μm wide,10μm thick test structure produced stress of 7.1 GPawhile the applied voltage is 5 V.The results indicate that the test structure is suitable for in-situ measurement of the fracture strength of MEMS thin films.
文摘A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.
基金National Natural Science Foundation of China(No.60576020,No.60606014).
文摘Thin film is a widely used structure in the present microelectromechanical systems (MEMS) and plays a vital role in many functional devices. However, the great size difference between the film's thickness and its planar dimensions makes it difficult to study the thin film performance numerically. In this work, a scaling transformation was presented to make the different dimensional sizes equivalent, and thereby, to improve the grid quality considerably. Two numerical experiments were studied to validate the present scaling transformation method. The numerical results indicated that the largest grid size difference can be decreased to one to two orders of magnitude by using the present scaling transformation, and the memory required by the numerical simulation, i.e., the total grid number, could be reduced by about two to three orders of magnitude, while the numerical accuracies with and without this scaling transformation were nearly the same.
文摘A novel capacitive microwave MEMS switch with a silicon/metal/dielectric as a membrane is fabricated successfully by bonding and etching-stop process. Its principal, design, and fabricating process are described in detail. A patterned dielectric layer, Ta2O5, with dielectric constant of 24 is reached. Experiment results show this novel structure,where the switch's dielectric layer is not prepared on the transmission line, features very low insertion loss. The insertion loss is 0.06dB at 2GHz and lower than 0.5dB in the wider range from De up to 20GHz,especially when the transmission line metal is only 0. 5μm thick.
文摘The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its large volume and mass. But, many properties of MEMS switch, such as sensitivity, resolution and contact time, are affected by the air damping caused from the squeezed air film between two parallel plates moving relatively. Based on the conservation laws for mass and flux and the nonlinear Reynolds equation, the coefficient of squeeze-film damping was derived. The dynamic responses of the inertial switch with and without squeeze-film damping were simulated by using software ANSYS. The simulated results show that the sensitivity and contact time of the switch descend by about 5% and 15%, respectively, when the effects of squeeze-film damping are considered.
文摘RF MEMS开关加工工序多,过程复杂,加工难度较大,影响开关加工质量的因素众多。从工艺流程入手,对加工过程中的牺牲层平坦化、牺牲层释放、薄膜微桥厚度及均匀性控制、薄膜微桥应力处理等关键技术和重要影响因素进行了分析。研制的20-40 GHz RF MEMS开关,其插入损耗≤0.4 d B,回波损耗≤-20 d B,隔离度≥20 d B,驱动电压50-100 V,热切换寿命≥106次。
文摘在柔性LCP基板上制备RF MEMS开关,加工难度较大,影响开关质量的因素较多。主要研究影响LCP基RF MEMS开关加工质量的主要因素,寻找工艺过程控制解决方案。通过对关键工序的试验,对加工过程中的基板清洗、LCP基板覆铜面镀涂及整平、LCP基板无铜面溅射金属膜层、LCP基板平整度保持、二氧化硅膜层生长及图形化、牺牲层加工、薄膜微桥加工、牺牲层释放等工序进行了参数优化。研制的LCP基RF MEMS开关样件频率≤20 GHz、插入损耗≤0.5 d B,回波损耗≤-20 d B,隔离度≥20 d B,驱动电压30~50 V。该加工方法对柔性基板上可动结构的制造具有一定的借鉴价值。
基金This work was supported by National Natural Science Foundation of China, Under Grant No.(60676044)
文摘This paper reports on the fabrication and sensing characteristics of Polyimide-based humidity sensor,based on that,a new integrated circuit of humidity measurement has been designed.It is a novel capacitive-type systems on a chip structure using the MEMS process.The results show that the new sensor presents sensing characteristics over a humidity range from 10%~70% RH at 20℃,and the sensor is able to fabricated together with ICs technology.The result shows that integration of humidity sensor with integrated circuit of humidity measurement is considerably easier when they are built in sensing groove.The appeal of a new structure like this brings the possibility of applications that would require the flexibility of simple screen printing.
文摘Diamond-like carbon (DLC) films have recently been pursued as the protection of MEMS against their friction and wear.Plasma enhanced chemical vapor deposition (PECVD) technique is very attractive to prepare DLC coating for MEMS.This paper describes the preparation of DLC films using twinned electron cyclotron resonance (ECR) microwave PECVD process.Raman spectra confirmed the DLC characteristics of the films.Fourier-transform infrared (FT-IR)characterization indicates the carbon is bonded in the form sp~3 and sp~2 with hydrogen participating in bonding.The surface roughness of the films is as low as approximately (0.093)nm measured with an atomic force microscope.A CERT microtribometer system is employed to obtain information about the scratch resistance,friction properties,and sliding wear resistance of the films.The results show the deposited DLC films have low friction and good scratch/wear resistance properties.
基金Project supported by the National Natural Science Foundation of China(No10804119)
文摘This paper presents the design and fabrication of a Lamb wave device based on ZnO piezoelectric film. The Lamb waves were respectively launched and received by both Al interdigital transducers.In order to reduce the stress of the thin membrane,the ZnO/Al/LTO/Si;N;/Si multilayered thin plate was designed and fabricated.A novel method to obtain the piezoelectric constant of the ZnO film was used.The experimental results for characterizing the wave propagation modes and their frequencies of the Lamb wave device indicated that the measured center frequency of antisymmetric A;and symmetric S;modes Lamb wave agree with the theoretical predictions.The mass sensitivity of the MEMS Lamb wave device was also characterized for gravimetric sensing application.