In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
Oil and water separation has always been a top priority in the oil industry.In this study,a series of hyperbranched fluorinated polyamine-amine polymers(HFPA1-5)were synthesized directly using an improved“one-pot met...Oil and water separation has always been a top priority in the oil industry.In this study,a series of hyperbranched fluorinated polyamine-amine polymers(HFPA1-5)were synthesized directly using an improved“one-pot method.”The highly active fluorinated p-trifluoromethylaniline was used as the core raw material,while diethylenetriamine and methyl acrylate were used as the chain segment.A hyperbranched fluorine-containing polyamine-amine demulsifier(NHFPA6)was obtained through nano-grafting copolymerization of HFPA5.To enhance the demulsification and dehydration performance,the copolymerized HFPA6 was modified and combined.Then,the effects of the combination ratio,demulsifier concentration,demulsification time,and demulsification temperature on the demulsification effect were investigated.The results revealed that a combination ratio of DE-401:NHFPA6=1:1,a demulsification temperature of 50℃,a demulsification time of 60 min,and a demulsifier concentration of 150 mg/L yielded a dehydration rate as high as 99.80%.A response surface optimization design of demulsification conditions was performed.The model verified that the optimal demulsification conditions were 50℃,300 mg/L,and 90 min.However,considering the economic benefits of factories,it is more favorable to select demulsification conditions with a shorter time and lower concentration when the dehydration standard is met.Therefore,the demulsification conditions were selected as 50℃,150 mg/L,and 60 min.Compared to existing demulsifiers,the demulsifier developed in this study exhibits a lower demulsification temperature and higher demulsification efficiency.展开更多
Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Ni...Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.展开更多
The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-S...The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-SiO2 on shielding property of coatings was investigated. Relation between particle size distribution of original nano-SiO2 and its dispersal in water and alcohol after treatment were analyzed, respectively. The ultraviolet permeation rate of coatings filled with nano-SiO2 was detected by ultraviolet spectral photometer. And the particle size distribution of coatings was examined by TEM. The results show that particle size distribution is comparative convergence and smaller one order of magnitude after dispersal treatment. The size of most nano-SiO2 in coatings is smaller than 100nm, which indicates that the amount of nano-SiO2 in the resin is 20% (solid content of resin), the permeation rate of ultraviolet of composite coatings decreases to 20%. The research of its excellent ultraviolet shielding property mechanism indicates minor size and high surface energy of nano-SiO2 can produce different absorption, reflection and scatter actions to different wavelengths.展开更多
The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)ne...The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles.展开更多
Functionalized PS/SiO_2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifierαolefin solfonate(AOS).As demonstrate...Functionalized PS/SiO_2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifierαolefin solfonate(AOS).As demonstrated by transmission electron microscopy and atomic force microscopy,well-defined core-shell PS/SiO_2 composite nanoparticles with a diameter of 50 nm were obtained.Sulfonic groups introduced onto the surface of the composite nanoparticles were quantified by FTIR,and can be controlled to some exten...展开更多
A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The str...A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric(TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.展开更多
Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects ...Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects on their gelation performance, which has been little researched. In this study, the high-temperature gelation performance, chemical structure, and microstructure of polymer gels prepared from two nanomaterials (i.e., nano-SiO_(2) and nano-TiO_(2)) were measured. The conventional HPAM/PEI polymer gel system was employed as the control sample. Results showed that the addition of nano-TiO_(2) could significantly enhance the gel strength of HPAM/PEI gel at 80 ℃. The gel strength of the enhanced HPAM/PEI gel with 0.1 wt% nano-TiO_(2) could reach grade I. The system also had excellent high-temperature stability at 150 ℃. The enhanced HPAM/PEI gel with 0.02 wt% nano-TiO_(2) reached the maximum gel strength at 150 ℃ with a storage modulus (G′) of 15 Pa, which can meet the need for efficient plugging. However, the nano-SiO_(2) enhanced HPAM/PEI polymer gel system showed weaker gel strength than that with nano-TiO_(2) at both 80 and 150 ℃ with G′ lower than 5 Pa. Microstructures showed that the nano-TiO_(2) enhanced HPAM/PEI gel had denser three-dimensional (3D) mesh structures, which makes the nano-TiO_(2) enhanced HPAM/PEI gel more firmly bound to water. The FT-IR results also confirmed that the chemical structure of the nano-TiO_(2) enhanced HPAM/PEI gel was more thermally stable than nano-SiO_(2) since there was a large amount of –OH groups on the structure surface. Therefore, nano-TiO_(2) was more suitable as the reinforcing material for HPAM/PEI gels for high-temperature petroleum reservoir conformance improvement.展开更多
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
基金supported by National Natural Science Foundation of China(NSFC 21676145)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,China).
文摘Oil and water separation has always been a top priority in the oil industry.In this study,a series of hyperbranched fluorinated polyamine-amine polymers(HFPA1-5)were synthesized directly using an improved“one-pot method.”The highly active fluorinated p-trifluoromethylaniline was used as the core raw material,while diethylenetriamine and methyl acrylate were used as the chain segment.A hyperbranched fluorine-containing polyamine-amine demulsifier(NHFPA6)was obtained through nano-grafting copolymerization of HFPA5.To enhance the demulsification and dehydration performance,the copolymerized HFPA6 was modified and combined.Then,the effects of the combination ratio,demulsifier concentration,demulsification time,and demulsification temperature on the demulsification effect were investigated.The results revealed that a combination ratio of DE-401:NHFPA6=1:1,a demulsification temperature of 50℃,a demulsification time of 60 min,and a demulsifier concentration of 150 mg/L yielded a dehydration rate as high as 99.80%.A response surface optimization design of demulsification conditions was performed.The model verified that the optimal demulsification conditions were 50℃,300 mg/L,and 90 min.However,considering the economic benefits of factories,it is more favorable to select demulsification conditions with a shorter time and lower concentration when the dehydration standard is met.Therefore,the demulsification conditions were selected as 50℃,150 mg/L,and 60 min.Compared to existing demulsifiers,the demulsifier developed in this study exhibits a lower demulsification temperature and higher demulsification efficiency.
文摘Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.
文摘The present status and development trends of nano-composite coatings were briefly introduced. The nano-SiO2 was dispersed into crylic acid resin by ultrasonic wave and high-energy ball milling, the influence of nano-SiO2 on shielding property of coatings was investigated. Relation between particle size distribution of original nano-SiO2 and its dispersal in water and alcohol after treatment were analyzed, respectively. The ultraviolet permeation rate of coatings filled with nano-SiO2 was detected by ultraviolet spectral photometer. And the particle size distribution of coatings was examined by TEM. The results show that particle size distribution is comparative convergence and smaller one order of magnitude after dispersal treatment. The size of most nano-SiO2 in coatings is smaller than 100nm, which indicates that the amount of nano-SiO2 in the resin is 20% (solid content of resin), the permeation rate of ultraviolet of composite coatings decreases to 20%. The research of its excellent ultraviolet shielding property mechanism indicates minor size and high surface energy of nano-SiO2 can produce different absorption, reflection and scatter actions to different wavelengths.
基金supported by the National Key Research and Development Program of China(Nos.2019YFD1101204 and 2019YFD1101203)the National Natural Science Foundation of China(Nos.31870547 and 31901251)+3 种基金the Project funded by China Postdoctoral Science Foundation(No.2019M652919)the Research and Development Program in Key Areas of Guangdong Province(No.2020B020216002)the Project of Guangzhou Municipal Key Laboratory of Woody Biomass Functional New Materials(No.201905010005)the Project of Key Disciplines of Forestry Engineering of Bureau of Education of Guangzhou Municipality.
文摘The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles.
基金supported by the Hi-Tech Research and Development Program of China(863,No2006AA03Z562)
文摘Functionalized PS/SiO_2 composite nanoparticles bearing sulfonic groups on the surface were successfully synthesized via emulsion copolymerization using a polymerizable emulsifierαolefin solfonate(AOS).As demonstrated by transmission electron microscopy and atomic force microscopy,well-defined core-shell PS/SiO_2 composite nanoparticles with a diameter of 50 nm were obtained.Sulfonic groups introduced onto the surface of the composite nanoparticles were quantified by FTIR,and can be controlled to some exten...
文摘A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 ℃. The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric(TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01A250)the CNPC Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-04).
文摘Nanoparticles have been widely used in polymer gel systems in recent years to improve gelation performance under high-temperature reservoir conditions. However, different types of nanoparticles have different effects on their gelation performance, which has been little researched. In this study, the high-temperature gelation performance, chemical structure, and microstructure of polymer gels prepared from two nanomaterials (i.e., nano-SiO_(2) and nano-TiO_(2)) were measured. The conventional HPAM/PEI polymer gel system was employed as the control sample. Results showed that the addition of nano-TiO_(2) could significantly enhance the gel strength of HPAM/PEI gel at 80 ℃. The gel strength of the enhanced HPAM/PEI gel with 0.1 wt% nano-TiO_(2) could reach grade I. The system also had excellent high-temperature stability at 150 ℃. The enhanced HPAM/PEI gel with 0.02 wt% nano-TiO_(2) reached the maximum gel strength at 150 ℃ with a storage modulus (G′) of 15 Pa, which can meet the need for efficient plugging. However, the nano-SiO_(2) enhanced HPAM/PEI polymer gel system showed weaker gel strength than that with nano-TiO_(2) at both 80 and 150 ℃ with G′ lower than 5 Pa. Microstructures showed that the nano-TiO_(2) enhanced HPAM/PEI gel had denser three-dimensional (3D) mesh structures, which makes the nano-TiO_(2) enhanced HPAM/PEI gel more firmly bound to water. The FT-IR results also confirmed that the chemical structure of the nano-TiO_(2) enhanced HPAM/PEI gel was more thermally stable than nano-SiO_(2) since there was a large amount of –OH groups on the structure surface. Therefore, nano-TiO_(2) was more suitable as the reinforcing material for HPAM/PEI gels for high-temperature petroleum reservoir conformance improvement.