Ultrafine Ti(C,N)-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties,such as porosity,mechanical properties and phase transformation,were investigated by optical microscopy (OM),scanni...Ultrafine Ti(C,N)-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties,such as porosity,mechanical properties and phase transformation,were investigated by optical microscopy (OM),scanning electron microscopy (SEM),X-ray diffraction (XRD),and differential scanning calorimeter (DSC).It is found that the spark plasma sintering properties of Ti(C,N)-based cermet differ from those of conventional vacuum sintering.The liquid phase appearance is at least lower by 150℃ than that in vacuum sintering.The porosity decreases sharply below 1 200℃ and reaches minimum at 1 200℃,and afterwards it almost keeps invariable and no longer increases.SPS remarkably accelerates the phase transformation of Ti(C,N)-based cermet and it has a powerful ability to remove oxides in Ti(C,N)-based cermets.Above 1 350℃,denitrification occurred.Fresh graphite phase formed above 1 430℃.Both the porosity and graphite are responsible for the poor TRS.展开更多
Spark plasma sintering (SPS) and conventional vacuum sintering (VS) wereemployed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstracture, andporosity and mechanical properties of the sampl...Spark plasma sintering (SPS) and conventional vacuum sintering (VS) wereemployed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstracture, andporosity and mechanical properties of the samples fabricated by SPS were compared with those of thesamples sintered by VS using optical microscopy, scanning electron microscopy, universal testingmachine, and rockwell tester. The results are as follows: (1) The shrinkage process occurred mainlyin the range of 1000-1300 deg C during the VS process, and only a 0.2 percent linear shrinkage ratioappeared below 800 deg C; during the SPS process, a 60 percent dimensional change occurred below800 deg C as a result of pressure action. (2) By utilizing the SPS technique, it is difficult forobtaining fully dense Ti(C,N)-based cermets. Due to the much existence of pores and un-combinedcarbon, the mechanical properties of the sintered samples by SPS are inferior to sintered ones byVS. (3) grain size of the samples sintered by SPS is still below 0.5 urn, but not by VS; because oflow sintering temperature, there are no typical core/rim structures formed in the sintered samplesby SPS1; the main microstructures of the sintered samples by SPS2 are a white core/grey shellstructure, whereas by VS show a typical black core/grey shell structure.展开更多
Effect of two-stage sintering parameters such as heating rate, top sintering temperature and holding time, sintering temperature and holding time at the second stage on relative density, transverse rupture strength(TR...Effect of two-stage sintering parameters such as heating rate, top sintering temperature and holding time, sintering temperature and holding time at the second stage on relative density, transverse rupture strength(TRS) and microstructures of powder injection molded Ti(C, N)-based cermets were investigated, by means of Archimedes’s method, three-point bending test and micrographic analysis. The results show that the optimum sintering cycle for powder injection molded Ti(C, N)-based cermets comprises rapid heating (10℃/min) at low temperatures, slow heating (5℃/min) at intermediate temperatures, holding at the highest sintering temperature (1420℃) for a short time (10min), and holding at the second stage (1360℃) for a longer time (6h) to avoid grain coarsening, and that its TRS reaches 624MPa, and there are little pores in their microstructures.展开更多
The microstructure and mechanical properties of Ti(C, N)-based cermets with different content Mo were studied. Different Mo contents were added into Ti(C, N)-based cermets. Effect of sintering temperature on mechanica...The microstructure and mechanical properties of Ti(C, N)-based cermets with different content Mo were studied. Different Mo contents were added into Ti(C, N)-based cermets. Effect of sintering temperature on mechanical properties of the cermets was also investigated. Specimens were fabricated by conventional powder metallurgy techniques and vacuum sintered at different temperatures. The microstructure and the fracture morphology were investigated using scanning electron microscope. Transverse strength and hardness were measured. The results show that the microstructure is uniform and the thickness of rim phase is moderate when the content of Mo is 8%. The mechanical properties are the best when the content of Mo is 8% and the sintering temperature is 1450℃.展开更多
The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanica...The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0. 30 μm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.展开更多
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 0 0 74 0 17)andStateKeyLaboratoryofAdvancedTechnol ogyforMaterialsSynthesisandProcessingofWuhanUniversityofTechnology
文摘Ultrafine Ti(C,N)-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties,such as porosity,mechanical properties and phase transformation,were investigated by optical microscopy (OM),scanning electron microscopy (SEM),X-ray diffraction (XRD),and differential scanning calorimeter (DSC).It is found that the spark plasma sintering properties of Ti(C,N)-based cermet differ from those of conventional vacuum sintering.The liquid phase appearance is at least lower by 150℃ than that in vacuum sintering.The porosity decreases sharply below 1 200℃ and reaches minimum at 1 200℃,and afterwards it almost keeps invariable and no longer increases.SPS remarkably accelerates the phase transformation of Ti(C,N)-based cermet and it has a powerful ability to remove oxides in Ti(C,N)-based cermets.Above 1 350℃,denitrification occurred.Fresh graphite phase formed above 1 430℃.Both the porosity and graphite are responsible for the poor TRS.
基金This work was financially supported by the National Natural Science Foundation of China (No.50074017), the Natural Sci-ence Foundation of Hubei Province (No.2003ABA092) and the Doctoral Education Fundation of China (No.1999048714).
文摘Spark plasma sintering (SPS) and conventional vacuum sintering (VS) wereemployed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstracture, andporosity and mechanical properties of the samples fabricated by SPS were compared with those of thesamples sintered by VS using optical microscopy, scanning electron microscopy, universal testingmachine, and rockwell tester. The results are as follows: (1) The shrinkage process occurred mainlyin the range of 1000-1300 deg C during the VS process, and only a 0.2 percent linear shrinkage ratioappeared below 800 deg C; during the SPS process, a 60 percent dimensional change occurred below800 deg C as a result of pressure action. (2) By utilizing the SPS technique, it is difficult forobtaining fully dense Ti(C,N)-based cermets. Due to the much existence of pores and un-combinedcarbon, the mechanical properties of the sintered samples by SPS are inferior to sintered ones byVS. (3) grain size of the samples sintered by SPS is still below 0.5 urn, but not by VS; because oflow sintering temperature, there are no typical core/rim structures formed in the sintered samplesby SPS1; the main microstructures of the sintered samples by SPS2 are a white core/grey shellstructure, whereas by VS show a typical black core/grey shell structure.
文摘Effect of two-stage sintering parameters such as heating rate, top sintering temperature and holding time, sintering temperature and holding time at the second stage on relative density, transverse rupture strength(TRS) and microstructures of powder injection molded Ti(C, N)-based cermets were investigated, by means of Archimedes’s method, three-point bending test and micrographic analysis. The results show that the optimum sintering cycle for powder injection molded Ti(C, N)-based cermets comprises rapid heating (10℃/min) at low temperatures, slow heating (5℃/min) at intermediate temperatures, holding at the highest sintering temperature (1420℃) for a short time (10min), and holding at the second stage (1360℃) for a longer time (6h) to avoid grain coarsening, and that its TRS reaches 624MPa, and there are little pores in their microstructures.
文摘The microstructure and mechanical properties of Ti(C, N)-based cermets with different content Mo were studied. Different Mo contents were added into Ti(C, N)-based cermets. Effect of sintering temperature on mechanical properties of the cermets was also investigated. Specimens were fabricated by conventional powder metallurgy techniques and vacuum sintered at different temperatures. The microstructure and the fracture morphology were investigated using scanning electron microscope. Transverse strength and hardness were measured. The results show that the microstructure is uniform and the thickness of rim phase is moderate when the content of Mo is 8%. The mechanical properties are the best when the content of Mo is 8% and the sintering temperature is 1450℃.
基金Project(50323008) supported by the National Natural Science Foundation of China
文摘The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0. 30 μm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.