This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil...This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electr...The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.展开更多
The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that p...The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that proper addition of sodium carboxymethyl cellulose or sodium citrate into nano-ceramic coating, exhibits an enhanced dispersion and stability compared with the coating without dispersants. The negative ζ -potential of the particles in the nano-coating increases with the increase of pH value of the coating, and the curve of ζ -pH moves to lower pH range when the dispersants are added into the coating. To ensure that the coating has not only good stability and dispersibility but also no corrosivity to substrate alloy, adding 1.00% sodium citrate into coating with pH value of 7-8 is preferable to adding sodium carboxymethyl cellulose.展开更多
Al_(0.4)CoCrFe_(2)Ni_(2)high-entropy alloys with different additions of TiO_(2) nanoceramic particles(0,1.25vol.%,2.5vol.%,3.75vol.%and 5vol.%,respectively)were prepared by using the vacuum arc melting method.The effe...Al_(0.4)CoCrFe_(2)Ni_(2)high-entropy alloys with different additions of TiO_(2) nanoceramic particles(0,1.25vol.%,2.5vol.%,3.75vol.%and 5vol.%,respectively)were prepared by using the vacuum arc melting method.The effects of TiO_(2) addition on the crystal structure,microstructures and mechanical properties of the alloy were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The microstructure analysis shows that the TiO_(2)nano-ceramic particles added in the alloy are decomposed,and a small amount of Al_(2)O_(3)and a great number of intermetallic compounds(γ'phases)with simple cube structure are formed.Theγ'phases are enriched at inter-dendrite,which increases the resistance of dislocation movement during the deformation of the alloy,thus balancing the problem of high plasticity and low strength of the alloy.When the addition of TiO_(2)is 2.5vol.%,the strength of the high-entropy alloy reaches the maximum of 489 MPa,which is 11.1%higher than the matrix alloy composed of single FCC phase.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu...Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ...The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.展开更多
Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it...Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.展开更多
Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin...Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.展开更多
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak...The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.展开更多
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond...Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
Objective:To observe the effects of Danggui Shaoyao powder(DSP)on hepatic lipid metabolism and further explore its mechanism of action by peroxisome proliferator-activated receptor(PPARγ)-liver X receptor(LXRα)-aden...Objective:To observe the effects of Danggui Shaoyao powder(DSP)on hepatic lipid metabolism and further explore its mechanism of action by peroxisome proliferator-activated receptor(PPARγ)-liver X receptor(LXRα)-adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1)pathway regulation.Methods: Eight C57BL/6J male mice were selected as the control group,and 24 ApoE^(−/−)male mice were randomly divided into the atherosclerosis model(AS)group,atorvastatin calcium(AC)group,and DSP group(n=8 each group).To establish an AS model,ApoE^(−/−)mice were fed a high-fat diet for 16 weeks.Pathologic changes in the aortic vasculature and liver were identified using Oil Red O staining.Triglyceride(TG),cholesterol(TC),and low-density lipoprotein cholesterol(LDL-C)levels were determined in the livers using a single-reagent GPO-PAP method.Fluorescence quantitative polymerase chain reaction and western blot were used to observe and evaluate the mRNA and protein expression of the PPARγ-LXRα-ABCA1 intermediates in the liver.Results: After 16 weeks of a high-fat diet,ApoE^(−/−)mice showed more Oil Red O staining in the aorta and liver compared to the CONT group.Compared to the AS group,the DSP and AC treatment reduced aortic plaque and hepatic lipid deposition to varying degrees.Furthermore,DSP significantly reduced the hepatic lipid area in ApoE^(−/−)mice(P<.001)and decreased the levels of TG,TC,and LDL-C in liver(P<.001,P=.027,P<.001,respectively).DSP also significantly increased the levels of PPARγ,LXRα,ABCA1,and ABCG1 mRNA expression,as well as the PPARγ,LXRα,ABCA1,and ABCG1 protein expression in liver.Conclusion: DSP improved hepatic lipid metabolism via PPARγ-LXRα-ABCA1 pathway modulation for AS treatment.展开更多
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
As an energetic material of great interest,the work capacity of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)has been questioned recently.Although some research groups have explored the reasons for the l...As an energetic material of great interest,the work capacity of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)has been questioned recently.Although some research groups have explored the reasons for the low working ability of TKX-50,the plane impact experiment on powdered TKX-50 is obviously closer to the practical application,and the conclusions based on this are more guiding.Hence,we performed shock Hugoniot measurements of powdered TKX-50 between 5.65 and 16.29 GPa.The plane impact experiments of powdered TKX-50 were carried out and the shocked Raman spectra were collected.By Raman spectroscopy analysis,a new peak of powdered TKX-50 was found between19.47 GPa and 24.96 GPa,which may be caused by decomposition/phase transition and was related with the low work capacity.展开更多
A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EA...A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.展开更多
文摘This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
文摘The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.
文摘The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that proper addition of sodium carboxymethyl cellulose or sodium citrate into nano-ceramic coating, exhibits an enhanced dispersion and stability compared with the coating without dispersants. The negative ζ -potential of the particles in the nano-coating increases with the increase of pH value of the coating, and the curve of ζ -pH moves to lower pH range when the dispersants are added into the coating. To ensure that the coating has not only good stability and dispersibility but also no corrosivity to substrate alloy, adding 1.00% sodium citrate into coating with pH value of 7-8 is preferable to adding sodium carboxymethyl cellulose.
基金supported by the Open Project of State Key Laboratory of Light Alloy Casting Technology for High-end Equipment(LACT-009)the Program for Natural Science Foundation of Liaoning Province(2022-BS-181).
文摘Al_(0.4)CoCrFe_(2)Ni_(2)high-entropy alloys with different additions of TiO_(2) nanoceramic particles(0,1.25vol.%,2.5vol.%,3.75vol.%and 5vol.%,respectively)were prepared by using the vacuum arc melting method.The effects of TiO_(2) addition on the crystal structure,microstructures and mechanical properties of the alloy were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The microstructure analysis shows that the TiO_(2)nano-ceramic particles added in the alloy are decomposed,and a small amount of Al_(2)O_(3)and a great number of intermetallic compounds(γ'phases)with simple cube structure are formed.Theγ'phases are enriched at inter-dendrite,which increases the resistance of dislocation movement during the deformation of the alloy,thus balancing the problem of high plasticity and low strength of the alloy.When the addition of TiO_(2)is 2.5vol.%,the strength of the high-entropy alloy reaches the maximum of 489 MPa,which is 11.1%higher than the matrix alloy composed of single FCC phase.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金supported by the National Natural Science Foundation of China(No.52274359)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110406)+3 种基金Beijing Natural Science Foundation,China(No.2212035)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-19005C1Z and 00007718)the Aeroengine Group University Research Cooperation Project,China(No.HFZL2021CXY021)the State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2021Z-03 and 2022Z-14).
文摘Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金supported by the National Natural Science Foundation of China (Nos.52074254 and 52174349)the CAS Project for Young Scientists in Basic Research,China (No.YSBR-025)+3 种基金the Shandong Provincial Science and Technology Innovation Project,China (No.2019JZZY010363)the Key Projects of International Cooperation,China (No.122111KYSB20200034)the Project of Key Laboratory of Science and Technology on Particle Materials,China (No.CXJJ-22S043)Chinese Academy of Sciences.This work was also financially supported by the Selection of Best Candidates to Undertake Key Research Projects,China (No.211110230200).
文摘The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.
基金financially supported by the Liaoning Province Applied Fundamental Research Program(No.2023JH2/101700039)Liaoning Province Natural Science Foundation(No.2023-MSLH-328)。
文摘Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.
基金National Natural Science Foundation of China (52305358)the Fundamental Research Funds for the Central Universities (2023ZYGXZR061)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2022A1515010304)Science and Technology Program of Guangzhou (202201010362)Young Elite Scientists Sponsorship Program by CAST . (2023QNRC001)Young Talent Support Project of Guangzhou (QT-2023-001)
文摘Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.
基金financial supports provided by the China Scholarship Council(Nos.202206 290061 and 202206290062)。
文摘The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.
基金supported by VTT Technical Research Centre of Finland,Aalto University,Aerosint SA,and partially from European Union Horizon 2020 (No.768775)。
文摘Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
基金supported by the National Natural Science Foundation of China(82074325).
文摘Objective:To observe the effects of Danggui Shaoyao powder(DSP)on hepatic lipid metabolism and further explore its mechanism of action by peroxisome proliferator-activated receptor(PPARγ)-liver X receptor(LXRα)-adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1)pathway regulation.Methods: Eight C57BL/6J male mice were selected as the control group,and 24 ApoE^(−/−)male mice were randomly divided into the atherosclerosis model(AS)group,atorvastatin calcium(AC)group,and DSP group(n=8 each group).To establish an AS model,ApoE^(−/−)mice were fed a high-fat diet for 16 weeks.Pathologic changes in the aortic vasculature and liver were identified using Oil Red O staining.Triglyceride(TG),cholesterol(TC),and low-density lipoprotein cholesterol(LDL-C)levels were determined in the livers using a single-reagent GPO-PAP method.Fluorescence quantitative polymerase chain reaction and western blot were used to observe and evaluate the mRNA and protein expression of the PPARγ-LXRα-ABCA1 intermediates in the liver.Results: After 16 weeks of a high-fat diet,ApoE^(−/−)mice showed more Oil Red O staining in the aorta and liver compared to the CONT group.Compared to the AS group,the DSP and AC treatment reduced aortic plaque and hepatic lipid deposition to varying degrees.Furthermore,DSP significantly reduced the hepatic lipid area in ApoE^(−/−)mice(P<.001)and decreased the levels of TG,TC,and LDL-C in liver(P<.001,P=.027,P<.001,respectively).DSP also significantly increased the levels of PPARγ,LXRα,ABCA1,and ABCG1 mRNA expression,as well as the PPARγ,LXRα,ABCA1,and ABCG1 protein expression in liver.Conclusion: DSP improved hepatic lipid metabolism via PPARγ-LXRα-ABCA1 pathway modulation for AS treatment.
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
基金supported by the National Natural Science Foundation of China(Grant No.12072299)the Fundamental Research Funds for the Central Universities(Grant No.2682020ZT102)。
文摘As an energetic material of great interest,the work capacity of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)has been questioned recently.Although some research groups have explored the reasons for the low working ability of TKX-50,the plane impact experiment on powdered TKX-50 is obviously closer to the practical application,and the conclusions based on this are more guiding.Hence,we performed shock Hugoniot measurements of powdered TKX-50 between 5.65 and 16.29 GPa.The plane impact experiments of powdered TKX-50 were carried out and the shocked Raman spectra were collected.By Raman spectroscopy analysis,a new peak of powdered TKX-50 was found between19.47 GPa and 24.96 GPa,which may be caused by decomposition/phase transition and was related with the low work capacity.
基金funded by the National Key Research and Development Program of China(Nos.2022YFE03130000 and 2022YFE03130003)National Natural Science Foundation of China(Nos.12205336 and 12475208)+2 种基金The Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0790102)the Provincial Natural Science Foundation of Anhui(No.2408085J002)Interdisciplinary and Collaborative Teams of CAS。
文摘A feedback control of fuel recycling via real-time boron powder injection,addressing the issue of continuously increasing recycling in long-pulse plasma discharges,has been successfully developed and implemented on EAST tokamak.The feedback control system includes four main parts:the impurity powder dropper(IPD),a diagnostic system measuring fuel recycling level represented by D_(α)emission,a plasma control system(PCS)implementing the Proportional Integral Derivative(PID)algorithm,and a signal converter connecting the IPD and PCS.Based on this control system,both active control and feedback control experiments have recently been performed on EAST with a full metal wall.The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases.In the feedback control experiments,it is also observed that the D_(α)emission is reduced to the level below the target D_(α)value by adjusting boron injection flow rate,indicating successful implementation of the fuel recycling feedback control on EAST.This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.