The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron m...The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.展开更多
This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy...This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.展开更多
Introducing the stress distribution near grain boundaries to improve the dislocation pileup model for the Halt-Petch (H-P) relation, the continuous distribution of dislocations in the pileup could be solved by means o...Introducing the stress distribution near grain boundaries to improve the dislocation pileup model for the Halt-Petch (H-P) relation, the continuous distribution of dislocations in the pileup could be solved by means of Tschebysheff polynomials for the Hilbert transformation. An analytical formula of the stress intensity factor for the dislocation pileup is obtained. The reverse H-P relation may be explained by the modified dislocation-pileup-model.展开更多
Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ...Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ratio of carbon/hydrogen/oxygen. By means of atomic force microscopy (AFM) and X-ray diffraction (XRD), it was shown that the NCD films deposited in the C2H5OH/H2 system possesses more uniform surface than that deposited in the CH4/H2/O2 system. Results from micro-Raman spectroscopy revealed that the quality of the NCD films was different even though the plasmas in the two systems contain exactly the same proportion of elements. In order to explain this phenomenon, the bond energy of forming OH groups, energy distraction in plasma and the deposition process of NCD films were studied. The experimental results and discussion indicate that for a same ratio of carbon/hydrogen/oxygen, the C2H5OH/H2 plasma was beneficial to deposit high quality NCD films with smaller average grain size and lower surface roughness.展开更多
The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 ...The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 and 20°C/min) and the bonding property was evaluated by the wet shear strength and wood failure of two-ply plywood panels after soaking in water (48 hours at room temperature and followed by 1-hour boiling). The test results indicated that the NCC content had little influence on the peak temperature, activation energy and the total heat of reaction of LPF resin at 5 and 10°C/min. But at 20°C/min, LPF0.00% (LPF resin without NCC) showed the highest total heat of reaction, while LPF0.25% (LPF resin containing 0.25% NCC content) and LPF0.50% (LPF resin containing 0.50% NCC content) gave the lowest value. The wet shear strength was affected by the NCC content to a certain extent. With regard to the results of one-way analysis of variance, the bonding quality could be improved by NCC and the optimum NCC content ranged from 0.25% to 0.50%. The wood failure was also affected by the NCC content, but the trend with respect to NCC content was not clear.展开更多
Nano-crystalline tungsten carbide thin films were deposited on Ni substrates by magnetron sputtering using WC as target material. The crystal structure and morphology of the thin films were characterized by X-ray diff...Nano-crystalline tungsten carbide thin films were deposited on Ni substrates by magnetron sputtering using WC as target material. The crystal structure and morphology of the thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) Electrochemical investigations showed that the electrode of the thin film exhibited higher electrocatalytic activity in the reaction of p-nitrophenol (PNP) reduction. FT-IR analysis indicated that p-aminophenol (PAP) was synthesized after two step reduction of PNP on nano-crystalline tungsten carbide thin film electrode.展开更多
A new electrode was prepared by using Pd implanted into nano-crystalline TiO2 and the character of photo-electrochemistry of implanted electrodes was investigated. The energy band structure of nano-crystalline TiO2 ha...A new electrode was prepared by using Pd implanted into nano-crystalline TiO2 and the character of photo-electrochemistry of implanted electrodes was investigated. The energy band structure of nano-crystalline TiO2 has not changed after implantation with Pd. The photo-current (i(ph)) of palladium implanted TiO2 nano-crystalline electrode is larger than that of pure TiO2 nanocrystalline electrode.展开更多
Fe-Cu thin films of 0.2 mum in thickness with different Cu contents wereprepared by using r.f. magnetron sputtering onto glass substrate. The effect of sputteringparameters, including Ar gas pressure and input rf powe...Fe-Cu thin films of 0.2 mum in thickness with different Cu contents wereprepared by using r.f. magnetron sputtering onto glass substrate. The effect of sputteringparameters, including Ar gas pressure and input rf power, on the structure and magnetic propertieswas investigated. It was found that when the power is lower than 70W, the structure of the filmsremained single bcc-Fe phase with Cu solubility of up to 50at. percent. TEM observations for thebcc-Fe phase showed that the grain size was in the nanometer range of less than 20nm. The coercivityof Fe- Cu films was largely affected by not only Ar gas pressure but also rf power, and reachedabout 2.5Oe in the pressure of 0.67-6.67Pa and in the power of less than 100W. In addition,saturation magnetization, with Cu content less than 60at. percent, was about proportional to thecontent of bcc-Fe. When Cu content was at 60at. percent, however, saturation magnetization was muchsmaller than its calculation value.展开更多
Natural cellulose with the crystal form of cellulose Ⅰ, when treated with condensed lye (e.g. 18%NaOH), can change into new crystal form of cellulose Ⅱ. But the nano-crystalline cellulose (NCC) can do it when only t...Natural cellulose with the crystal form of cellulose Ⅰ, when treated with condensed lye (e.g. 18%NaOH), can change into new crystal form of cellulose Ⅱ. But the nano-crystalline cellulose (NCC) can do it when only treated with dilute lye (e.g. 1%NaOH) at room temperature and even can dissolve into slightly concentrated lye (e.g. 4%NaOH).展开更多
The vibration behavior of size-dependent nano-crystalline nano-beams is investigated based on nonlocal, couple stress and surface elasticity theories. A nano- crystalline nano-beam is composed of three phases which ar...The vibration behavior of size-dependent nano-crystalline nano-beams is investigated based on nonlocal, couple stress and surface elasticity theories. A nano- crystalline nano-beam is composed of three phases which are nano-grains, nano-voids, and interface. Nano-voids or porosities inside the material have a stiffness-softening impact on the nano-beam. A Eringen's nonlocal elasticity theory is applied in the analysis of nano-crystalline nano-beams for the first time. Residual surface stresses which are usually neglected in modeling nano-crystalline nano-beams are incorporated into nonlocal elasticity to better understand the physics of the problem. Also, a modified couple stress theory is used to capture rigid rotations of grains. Applying a differential transform method (DTM) satisfying various boundary conditions, the governing equations obtained from the Hamilton's principle are solved. Reliability of the proposed approach is verified by comparing the obtained results with those provided in the literature. The effects of the nonlocal parameter, surface effect, couple stress, grain size, porosities, and interface thickness on the vibration characteristics of nano-crystalline nano-beams are explored.展开更多
Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high ener...Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high energy ball milling were investigated by XRD, TOPAS P software, SEM and EDS. The results show that the nano-crystalline pre-alloyed powders can be fabricated by 5 h high energy ball milling. During the MA process, the diffusion of W, Ni and Fe happens in the process of repeated welding and fracturing. As a result, nano-crystalline supersaturated solid solutions are formed. The crystallite sizes won't be refined after 10 h ball milling. The crystallite sizes of different compositions are almost the same under the same MA condition. Due to the toughening mechanism of rare earth element, the powders of 90W-4Ni-2Fe-3.8Mo-0.2RE alloy are seriously agglomerated after ball milling compared with the other alloys. It can be concluded that the optimal sintering temperature of 90W-4Ni-2Fe-3.8Mo-0.2RE pre-alloyed powders after 15 h mechanical alloying is 1 300-1 350 ℃.展开更多
Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in...Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.展开更多
From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin film...From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin films with their optical, luminescence and surface properties establish an assessment to carry out further information to summarize AZO and IZO impact of the layer number.展开更多
Hexagonal nano-crystalline boron carbonitride (h-BCN) films grown on Si (100) substrate have been precisely investigated. The films were synthesized by radio frequency plasma enhanced chemical vapor deposition using t...Hexagonal nano-crystalline boron carbonitride (h-BCN) films grown on Si (100) substrate have been precisely investigated. The films were synthesized by radio frequency plasma enhanced chemical vapor deposition using tris-dimethylamino borane as a single-source molecular precursor. The deposition was performed by setting RF power at 400 - 800 W. The reaction pressure was at 2.6 Pa and the substrate temperature was recorded at 700°C - 800°C. Formation of the nano-crystalline h-BCN compound has been confirmed by X-ray diffraction analysis. The diffraction peaks at 26.3° together with a small unknown peak at 29.2° were elucidated due to the formation of an h-BCN structure. The films composed of B, C, and N atoms with different B-N, B-C, C-N chemical bonds in forming the sp2-BCN atomic configuration studied by X-ray photoelectron spectroscopy. Orientation and local structures of the h-BCN hybrid were studied by near-edge X-ray absorption fine structure (NEXAFS) measurements. The dominant presence of p* and s* resonance peaks of the sp2-hybrid orbitals in the B K-edge NEXAFS spectra revealed the formation of the sp2-BCN configuration around B atoms like-BN3 in h-BN. The orientation was suggested on the basis of the polarization dependence of B K-edge and N K-edge of the NEXAFS spectra.展开更多
A new technique was developed for the conversion of high titania slag,containing 70%-75% TiO2 and with MgO,FeO,CaO,Al2O3 and SiO2 as main impurities,into a synthetic rutile,90%-95% TiO2,which satisfies the requirement...A new technique was developed for the conversion of high titania slag,containing 70%-75% TiO2 and with MgO,FeO,CaO,Al2O3 and SiO2 as main impurities,into a synthetic rutile,90%-95% TiO2,which satisfies the requirements for fluidizing chlorination process with respect to impurity contents.After a pre-oxidation at around 1 042 ℃ and a heat-treatment above 1 510 ℃,the Ti components in high titania slag can be enriched into the rutile phase which can precipitate and grow,and can be separated with dilute hydrochloric and sulfuric acid,respectively.The results show that the average crystal size of rutile phase is over 25 μm,and the synthetic rutile containing more than 95% TiO2 can be produced by selective leaching.展开更多
We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor an...We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor and ATT as a support for the TiO2 nanoparticles.The photocatalytic activity of the C-Cl-codoped TiO2/ATT composites with mixed anatase/brookite/rutile phases obtained at pH= 3.0 was much higher than that of commercially available Degussa P25 for the photocatalytic degradation of acid red G under visible-light irradiation.The excellent photocatalytic activity of the developed composite originates from the nonmetal codoping,which extends the absorption edge of TiO2 into visible region,and the presence of multiple phases,which slow the recombination of photoexcited electron/hole pairs.The formation of hydroxyl radicals during the photocatalytic degradation process was detected by photoluminescence probing using terephthalic acid.A mechanism for photocatalysis over the C-Cl-codoped TiO2/ATT composites was proposed.展开更多
The oxidation behavior of electroconductive TiN/O′-Sialon ceramics prepared using high titania slag as main starting material was studied at 1 200-1 300 °C in air. The isothermal and non-isothermal oxidation pro...The oxidation behavior of electroconductive TiN/O′-Sialon ceramics prepared using high titania slag as main starting material was studied at 1 200-1 300 °C in air. The isothermal and non-isothermal oxidation processes were investigated by DTA-TG. Phase compositions and morphologies of the oxidized products were analyzed by XRD, SEM and EDS. The results indicate that the oxidation of TiN and O′-Sialon occurs at about 500 °C and 1 050 °C, respectively. After oxidation at 1 200-1 300 °C, a protective scale that consists of Fe2MgTi3O10, SiO2 and TiO2 is formed on the surface of the materials, which effectively prevents the oxidation process. The formation of a protective scale is relative to TiN content and apparent porosity of the samples, the amount of SiO2 and amorphous phase in the oxidation product. At the initial oxidation stage, the oxidation kinetics of the materials follows perfectly the linear law with the apparent activation energy of 1.574×105 J/mol, and at the late-mid stage, the oxidation of the samples obeys the parabolic law with the apparent activation energy of 2.693×105 J/mol. With the increase of TiN content, mass gain of the materials increases significantly.展开更多
Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), sca...Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), brunauer-emmett-teller (BET), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectra (DRS). The results indicate that deposited titania nanoparticles on bismuth oxide surface have micro-nano structure, and this composite material exhibits porosity and increased surface hydroxyl groups. Furthermore, the as-prepared photocatalyst shows higher photocatalytic activity to the degradation of 4-chlorophenol than pure titania or P25 under sunlight.展开更多
Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transf...Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR) and diffuse reflectance spectra (DRS). Photocatalytic activities of Nd/TiO2-SiO2 with different neodymium contents were evaluated by degradation of methyl orange. The light absorption of Nd/TiO2-SiO2 increased with increasing doping neodymium in a visible light range of 388-619 nm, and Nd doping was in favor of decreasing the recombination of photo-generated electrons with holes. Nd and SiO2 improved the photocatalytic activity of TiO2. The optimal molar fraction of Nd to Ti was 0.1%, and the optimum calcination temperature was 600 ℃. The highest degradation rate of methyl orange was 82.9% after irradiation for 1 h.展开更多
Quick surface metallization of titania powder was carried out by electrolesschemical deposition of nickel. The fabricated product was characterized by XRD, SEM, FTIR andcross-section metallography. The analysis result...Quick surface metallization of titania powder was carried out by electrolesschemical deposition of nickel. The fabricated product was characterized by XRD, SEM, FTIR andcross-section metallography. The analysis results show that titania particles are completely coatedby a thin nickel shell about 600 nm thick composed of nano-sized crystalline nickel particles.Mechanism of nickel chemical deposition on nano powder is proposed.展开更多
基金This work was supported by State Key Laboratory for Powder Metallurgy of China. We are grateful to the staff of Hu'nan Yin Zhou Nonferrous Metals Hi-Tech. Ltd. Company for cemented carbides powders.
文摘The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.
文摘This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given.
文摘Introducing the stress distribution near grain boundaries to improve the dislocation pileup model for the Halt-Petch (H-P) relation, the continuous distribution of dislocations in the pileup could be solved by means of Tschebysheff polynomials for the Hilbert transformation. An analytical formula of the stress intensity factor for the dislocation pileup is obtained. The reverse H-P relation may be explained by the modified dislocation-pileup-model.
文摘Nano-crystalline diamond (NCD) films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor in C2H5OH/H2 and CH4/H2/O2 systems, respectively, with a constant ratio of carbon/hydrogen/oxygen. By means of atomic force microscopy (AFM) and X-ray diffraction (XRD), it was shown that the NCD films deposited in the C2H5OH/H2 system possesses more uniform surface than that deposited in the CH4/H2/O2 system. Results from micro-Raman spectroscopy revealed that the quality of the NCD films was different even though the plasmas in the two systems contain exactly the same proportion of elements. In order to explain this phenomenon, the bond energy of forming OH groups, energy distraction in plasma and the deposition process of NCD films were studied. The experimental results and discussion indicate that for a same ratio of carbon/hydrogen/oxygen, the C2H5OH/H2 plasma was beneficial to deposit high quality NCD films with smaller average grain size and lower surface roughness.
文摘The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 and 20°C/min) and the bonding property was evaluated by the wet shear strength and wood failure of two-ply plywood panels after soaking in water (48 hours at room temperature and followed by 1-hour boiling). The test results indicated that the NCC content had little influence on the peak temperature, activation energy and the total heat of reaction of LPF resin at 5 and 10°C/min. But at 20°C/min, LPF0.00% (LPF resin without NCC) showed the highest total heat of reaction, while LPF0.25% (LPF resin containing 0.25% NCC content) and LPF0.50% (LPF resin containing 0.50% NCC content) gave the lowest value. The wet shear strength was affected by the NCC content to a certain extent. With regard to the results of one-way analysis of variance, the bonding quality could be improved by NCC and the optimum NCC content ranged from 0.25% to 0.50%. The wood failure was also affected by the NCC content, but the trend with respect to NCC content was not clear.
基金supported by the National Natural Science Foundation of China(No.20276069,20476097)
文摘Nano-crystalline tungsten carbide thin films were deposited on Ni substrates by magnetron sputtering using WC as target material. The crystal structure and morphology of the thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) Electrochemical investigations showed that the electrode of the thin film exhibited higher electrocatalytic activity in the reaction of p-nitrophenol (PNP) reduction. FT-IR analysis indicated that p-aminophenol (PAP) was synthesized after two step reduction of PNP on nano-crystalline tungsten carbide thin film electrode.
基金This project was financially supported by the National Natural Science Foundation of China.
文摘A new electrode was prepared by using Pd implanted into nano-crystalline TiO2 and the character of photo-electrochemistry of implanted electrodes was investigated. The energy band structure of nano-crystalline TiO2 has not changed after implantation with Pd. The photo-current (i(ph)) of palladium implanted TiO2 nano-crystalline electrode is larger than that of pure TiO2 nanocrystalline electrode.
基金This research is sponsored by the National Natural Science Foundation of China (Grant No.69971006).
文摘Fe-Cu thin films of 0.2 mum in thickness with different Cu contents wereprepared by using r.f. magnetron sputtering onto glass substrate. The effect of sputteringparameters, including Ar gas pressure and input rf power, on the structure and magnetic propertieswas investigated. It was found that when the power is lower than 70W, the structure of the filmsremained single bcc-Fe phase with Cu solubility of up to 50at. percent. TEM observations for thebcc-Fe phase showed that the grain size was in the nanometer range of less than 20nm. The coercivityof Fe- Cu films was largely affected by not only Ar gas pressure but also rf power, and reachedabout 2.5Oe in the pressure of 0.67-6.67Pa and in the power of less than 100W. In addition,saturation magnetization, with Cu content less than 60at. percent, was about proportional to thecontent of bcc-Fe. When Cu content was at 60at. percent, however, saturation magnetization was muchsmaller than its calculation value.
文摘Natural cellulose with the crystal form of cellulose Ⅰ, when treated with condensed lye (e.g. 18%NaOH), can change into new crystal form of cellulose Ⅱ. But the nano-crystalline cellulose (NCC) can do it when only treated with dilute lye (e.g. 1%NaOH) at room temperature and even can dissolve into slightly concentrated lye (e.g. 4%NaOH).
文摘The vibration behavior of size-dependent nano-crystalline nano-beams is investigated based on nonlocal, couple stress and surface elasticity theories. A nano- crystalline nano-beam is composed of three phases which are nano-grains, nano-voids, and interface. Nano-voids or porosities inside the material have a stiffness-softening impact on the nano-beam. A Eringen's nonlocal elasticity theory is applied in the analysis of nano-crystalline nano-beams for the first time. Residual surface stresses which are usually neglected in modeling nano-crystalline nano-beams are incorporated into nonlocal elasticity to better understand the physics of the problem. Also, a modified couple stress theory is used to capture rigid rotations of grains. Applying a differential transform method (DTM) satisfying various boundary conditions, the governing equations obtained from the Hamilton's principle are solved. Reliability of the proposed approach is verified by comparing the obtained results with those provided in the literature. The effects of the nonlocal parameter, surface effect, couple stress, grain size, porosities, and interface thickness on the vibration characteristics of nano-crystalline nano-beams are explored.
基金Project(2006259) supported by the Education Science Foundation of Jiangxi Provincial Education DepartmentProject(2007gqc1562) supported by the Natural Science Foundation of Jiangxi Province, China
文摘Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high energy ball milling were investigated by XRD, TOPAS P software, SEM and EDS. The results show that the nano-crystalline pre-alloyed powders can be fabricated by 5 h high energy ball milling. During the MA process, the diffusion of W, Ni and Fe happens in the process of repeated welding and fracturing. As a result, nano-crystalline supersaturated solid solutions are formed. The crystallite sizes won't be refined after 10 h ball milling. The crystallite sizes of different compositions are almost the same under the same MA condition. Due to the toughening mechanism of rare earth element, the powders of 90W-4Ni-2Fe-3.8Mo-0.2RE alloy are seriously agglomerated after ball milling compared with the other alloys. It can be concluded that the optimal sintering temperature of 90W-4Ni-2Fe-3.8Mo-0.2RE pre-alloyed powders after 15 h mechanical alloying is 1 300-1 350 ℃.
基金supported by the Research Pund of Hubei Provincial Department of Education of China (No.Q20081505)
文摘Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.
文摘From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin films with their optical, luminescence and surface properties establish an assessment to carry out further information to summarize AZO and IZO impact of the layer number.
文摘Hexagonal nano-crystalline boron carbonitride (h-BCN) films grown on Si (100) substrate have been precisely investigated. The films were synthesized by radio frequency plasma enhanced chemical vapor deposition using tris-dimethylamino borane as a single-source molecular precursor. The deposition was performed by setting RF power at 400 - 800 W. The reaction pressure was at 2.6 Pa and the substrate temperature was recorded at 700°C - 800°C. Formation of the nano-crystalline h-BCN compound has been confirmed by X-ray diffraction analysis. The diffraction peaks at 26.3° together with a small unknown peak at 29.2° were elucidated due to the formation of an h-BCN structure. The films composed of B, C, and N atoms with different B-N, B-C, C-N chemical bonds in forming the sp2-BCN atomic configuration studied by X-ray photoelectron spectroscopy. Orientation and local structures of the h-BCN hybrid were studied by near-edge X-ray absorption fine structure (NEXAFS) measurements. The dominant presence of p* and s* resonance peaks of the sp2-hybrid orbitals in the B K-edge NEXAFS spectra revealed the formation of the sp2-BCN configuration around B atoms like-BN3 in h-BN. The orientation was suggested on the basis of the polarization dependence of B K-edge and N K-edge of the NEXAFS spectra.
基金Project(FMRU2007K10)supported by the Open Research Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,China
文摘A new technique was developed for the conversion of high titania slag,containing 70%-75% TiO2 and with MgO,FeO,CaO,Al2O3 and SiO2 as main impurities,into a synthetic rutile,90%-95% TiO2,which satisfies the requirements for fluidizing chlorination process with respect to impurity contents.After a pre-oxidation at around 1 042 ℃ and a heat-treatment above 1 510 ℃,the Ti components in high titania slag can be enriched into the rutile phase which can precipitate and grow,and can be separated with dilute hydrochloric and sulfuric acid,respectively.The results show that the average crystal size of rutile phase is over 25 μm,and the synthetic rutile containing more than 95% TiO2 can be produced by selective leaching.
基金supported by the National Basic Research Program of China (973 Program, 2007CB613302)the Natural Science Foundation of Hubei Province (2016CFA078)~~
文摘We demonstrate the synthesis of C-Cl-codoped titania/attapulgite(TiO2/ATT) composites containing a mixture of TiO2 phases by a facile sol-gel method at 70 ℃ using titanium tetraisopropoxide as the TiO2 precursor and ATT as a support for the TiO2 nanoparticles.The photocatalytic activity of the C-Cl-codoped TiO2/ATT composites with mixed anatase/brookite/rutile phases obtained at pH= 3.0 was much higher than that of commercially available Degussa P25 for the photocatalytic degradation of acid red G under visible-light irradiation.The excellent photocatalytic activity of the developed composite originates from the nonmetal codoping,which extends the absorption edge of TiO2 into visible region,and the presence of multiple phases,which slow the recombination of photoexcited electron/hole pairs.The formation of hydroxyl radicals during the photocatalytic degradation process was detected by photoluminescence probing using terephthalic acid.A mechanism for photocatalysis over the C-Cl-codoped TiO2/ATT composites was proposed.
基金Project (2007CB613504) supported by the National Basic Research Program of ChinaProject (20070145041) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘The oxidation behavior of electroconductive TiN/O′-Sialon ceramics prepared using high titania slag as main starting material was studied at 1 200-1 300 °C in air. The isothermal and non-isothermal oxidation processes were investigated by DTA-TG. Phase compositions and morphologies of the oxidized products were analyzed by XRD, SEM and EDS. The results indicate that the oxidation of TiN and O′-Sialon occurs at about 500 °C and 1 050 °C, respectively. After oxidation at 1 200-1 300 °C, a protective scale that consists of Fe2MgTi3O10, SiO2 and TiO2 is formed on the surface of the materials, which effectively prevents the oxidation process. The formation of a protective scale is relative to TiN content and apparent porosity of the samples, the amount of SiO2 and amorphous phase in the oxidation product. At the initial oxidation stage, the oxidation kinetics of the materials follows perfectly the linear law with the apparent activation energy of 1.574×105 J/mol, and at the late-mid stage, the oxidation of the samples obeys the parabolic law with the apparent activation energy of 2.693×105 J/mol. With the increase of TiN content, mass gain of the materials increases significantly.
基金Project supported by the Scientific Research Foundation of Nanjing University of Information Science and Technology, ChinaProject (2010490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, China
文摘Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), brunauer-emmett-teller (BET), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectra (DRS). The results indicate that deposited titania nanoparticles on bismuth oxide surface have micro-nano structure, and this composite material exhibits porosity and increased surface hydroxyl groups. Furthermore, the as-prepared photocatalyst shows higher photocatalytic activity to the degradation of 4-chlorophenol than pure titania or P25 under sunlight.
基金Project(2009B010100001) supported by the Key Academic Program of the 3rd Phase "211 Project" of South China Agricultural University, ChinaProject(2007B030103019) supported by Guangdong Science and Technology Development Foundation, China
文摘Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR) and diffuse reflectance spectra (DRS). Photocatalytic activities of Nd/TiO2-SiO2 with different neodymium contents were evaluated by degradation of methyl orange. The light absorption of Nd/TiO2-SiO2 increased with increasing doping neodymium in a visible light range of 388-619 nm, and Nd doping was in favor of decreasing the recombination of photo-generated electrons with holes. Nd and SiO2 improved the photocatalytic activity of TiO2. The optimal molar fraction of Nd to Ti was 0.1%, and the optimum calcination temperature was 600 ℃. The highest degradation rate of methyl orange was 82.9% after irradiation for 1 h.
文摘Quick surface metallization of titania powder was carried out by electrolesschemical deposition of nickel. The fabricated product was characterized by XRD, SEM, FTIR andcross-section metallography. The analysis results show that titania particles are completely coatedby a thin nickel shell about 600 nm thick composed of nano-sized crystalline nickel particles.Mechanism of nickel chemical deposition on nano powder is proposed.