期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biphasic Nano-Domains of Planar Lipid Bilayer Complexed with Fluorogenic Polymer Reporter Tailored for Antimicrobial Detection
1
作者 Jimin Hwang Woo Hyuk Jung +1 位作者 Yeol Kyo Choi Dong June Ahn 《CCS Chemistry》 CAS 2022年第11期3637-3647,共11页
We have fabricated an unexpected type of supported planar bilayer composed of receptor phospholipids and single-chained diacetylenes as fluorogenic reporters using protruded anchor moieties with a positive terminal ch... We have fabricated an unexpected type of supported planar bilayer composed of receptor phospholipids and single-chained diacetylenes as fluorogenic reporters using protruded anchor moieties with a positive terminal charge.Nanoscale topographical and surface thermodynamic analyses,as well as molecular dynamics simulations,revealed the coexistence of well-dispersed liquid-condensed(L_(c))domains forming nano-islands and liquid-expanded(L_(e))region in the planar bilayer,enhancing sensitivity against a prototype of ubiquitous membrane-associated antimicrobial peptides,melittin.The L_(e)regions,acting as target receptors,enabled sensitive detection as the melittin adsorbed and inserted into these regions due to strong hydrophobic interactions between phospholipids and melittin.The L_(c)domains,serving as signal reporters,enabled diacetylenes to assemble,polymerize,and fluoresce in response to the insertion of melittin into the L_(e)regions.Thus,biphasic nanodomains of the planar lipid bilayer finally endowed this sensor system with a detection range of 100μMto 50 nM and a limit of detection(LOD)of∼37 nM for melittin.This exceeded the operational performance of the colorimetric polydiacetylene vesicle solution 45 times,which reportedly ranged from 100 to 4μM with an LOD of∼1.7μM. 展开更多
关键词 biphasic nano-domain supported lipid bilayer fluorogenic polymer reporter liquid-expanded region liquid-condensed domain
原文传递
Excellent thermal stability and high energy storage performances of BNT-based ceramics via phase-structure engineering
2
作者 Mingkun Wang Tian Bai +7 位作者 Aina He Zhongbin Pan Jinghao Zhao Luomeng Tang Zhihe Zhao Jinjun Liu Shushuang Li Weixing Xia 《Journal of Materiomics》 SCIE CSCD 2023年第6期1015-1023,共9页
Herein,a novel strategy for regulating the phase structure was used to significantly enhance the recoverable energy storage density(Wrec)and the thermal stability via designing the(1-x)[(Bi_(0.5)Na_(0.5))_(0.7)Sr_(0.3... Herein,a novel strategy for regulating the phase structure was used to significantly enhance the recoverable energy storage density(Wrec)and the thermal stability via designing the(1-x)[(Bi_(0.5)Na_(0.5))_(0.7)Sr_(0.3)TiO_(3)]-xBiScO_(3)((1-x)BNST-xBS)relaxor ferroelectric ceramics.The incorporation of BS into BNST ceramics markedly increases the local micro-structure disorder,causing a high polarization and inhibiting polarization hysteresis for 0.95BNST-0.05BS ceramics,leading to a large Wrec of 5.41 J/cm^(3)with an ideal efficiency(h)of 78.5%.Meanwhile,transmission electron microscope(TEM)results further proved that the nano-domain structure and the tetragonal(P4bm)phase superlattice structure of 0.95BNST-0.05BS ceramics possess an excellent thermal stability(20-200℃).An outstanding Wrec value of 3.18×(1.00±0.03)J/cm^(3)and an h value of 74.500±0.025 are achieved under a temperature range from 20℃to 200℃.This work provides a promising method for phase-structure design that can make it possible to apply temperature-insensitive ceramic dielectrics with a high energy storage density in harsh environments. 展开更多
关键词 Relaxor ferroelectric Energy storage properties Thermal stability nano-domain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部