期刊文献+
共找到600篇文章
< 1 2 30 >
每页显示 20 50 100
Preparation and Conducting Behavior of Amphibious Organic/Inorganic Hybrid Proton Exchange Membranes Based on Benzyltetrazole 被引量:3
1
作者 QIAO Li-gen SHI Wen-fang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第2期345-352,共8页
A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethox... A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethoxysilane(A-TES) and benzyltetrazole-modified triethoxysilane(BT-TES).The dual-curing approach including UV-curing and thermal curing was used to obtain the crosslinked membranes.Polyethylene glycol(400) diacrylate(PEGDA) was used as an oligomer to form the polymeric matrix.The molecular structures of precursors were characterized by 1 H,13 C and 29 Si NMR spectra.The thermogravimetric analysis(TGA) results show that the membranes exhibit acceptable thermal stability for their application at above 200 oC.The differential scanning calorimeter(DSC) determination indicates that the crosslinked membranes with the mass ratios of below 1.6 of BT-TES to A-TES and the same mass of H3PO4 doped as that of A-TES possess the-T g s,and the lowest T g(-28.9 ℃) exists for the membrane with double mass of H3PO4 doped as well.The high proton conductivity in a range of 9.4―17.3 mS/cm with the corresponding water uptake of 19.1%―32.8% of the membranes was detected at 90 oC under wet conditions.Meanwhile,the proton conductivity in a dry environment for the membrane with a mass ratio of 2.4 of BT-TES to A-TES and double H3PO4 loading increases from 4.89×10-2 mS/cm at 30 ℃ to 25.7 mS/cm at 140 ℃.The excellent proton transport ability under both hydrous and anhydrous conditions demonstrates a potential application in the polymer electrolyte membrane fuel cells. 展开更多
关键词 AMPHIBIOUS Benzyltetrazole Organic/inorganic hybrid membrane Phosphorus acid Proton conductivity
下载PDF
Enhanced H_(2) permeation and CO_(2) tolerance of self-assembled ceramic-metal-ceramic BZCYYb-Ni-CeO_(2) hybrid membrane for hydrogen separation 被引量:2
2
作者 Jianqiu Zhu Jingzeng Cui +11 位作者 Yuxuan Zhang Ze Liu Chuan Zhou Susu Bi Jingyuan Ma Jing Zhou Zhiwei Hu Tao Liu Zhi Li Xiangyong Zhao Jian-Qiang Wang Linjuan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期47-55,I0002,共10页
Perovskite-type mixed protonic-electronic conducting membranes have attracted attention because of their ability to separate and purify hydrogen from a mixture of gases generated by industrial-scale steam reforming ba... Perovskite-type mixed protonic-electronic conducting membranes have attracted attention because of their ability to separate and purify hydrogen from a mixture of gases generated by industrial-scale steam reforming based on an ion diffusion mechanism.Exploring cost-effective membrane materials that can achieve both high H_(2) permeability and strong CO_(2)-tolerant chemical stability has been a major challenge for industrial applications.Herein,we constructed a triple phase(ceramic-metal-ceramic)membrane composed of a perovskite ceramic phase BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)(BZCYYb),Ni metal phase and a fluorite ceramic phase CeO_(2).Under H_(2) atmosphere,Ni metal in-situ exsolved from the oxide grains,and decorated the grain surface and boundary,thus the electronic conductivity and hydrogen separation performance can be promoted.The BZCYYbNi-CeO_(2)hybrid membrane achieved an exceptional hydrogen separation performance of 0.53 mL min^(-1)cm^(-2) at 800℃ under a 10 vol% H_(2) atmosphere,surpassing all other perovskite membranes reported to date.Furthermore,the CeO_(2) phase incorporated into the BZCYYb-Ni effectively improved the CO_(2)-tolerant chemical stability.The BZCYYbNi-CeO_(2) membrane exhibited outstanding long-term stability for at least 80 h at 700℃ under 10 vol%CO_(2)-10 vol%H_(2).The success of hybrid membrane construction creates a new direction for simultaneously improving their hydrogen separation performance and CO_(2) resistance stability. 展开更多
关键词 Hydrogen separation Triple phase hybrid membrane Mixed proton-electron conductor Chemical stability X-ray absorption spectra
下载PDF
Removal of Chromium from Aqueous Solution Using Hybrid Membrane of Chitosan and Silicon Dioxide 被引量:1
3
作者 Yanling Deng Naoki Kano Hiroshi Imaizumi 《Journal of Chemistry and Chemical Engineering》 2016年第5期199-206,共8页
Adsorption experiment from aqueous solutions containing known amount of chromium (Cr) using hybrid membrane of chitosan and silicon dioxide was explored to evaluate the efficiency of the membrane as sorbent for Cr... Adsorption experiment from aqueous solutions containing known amount of chromium (Cr) using hybrid membrane of chitosan and silicon dioxide was explored to evaluate the efficiency of the membrane as sorbent for Cr(VI). Some variable parameters such as pH, contact time and the dosage of the membrane were optimized. Adsorption isotherms of Cr(VI) onto the hybrid membrane were measured with varying initial concentrations under optimized condition. Furthermore, the sorption mechanism of Cr by the membrane was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. The surface morphology of the membrane was determined by SEM (scanning electron microscope) for material characterization. The concentrations of Cr in solution are determined by ICP-MS (inductively coupled plasma mass spectrometry). Hybrid membrane of chitosan and silicon dioxide can be an efficient sorbent for Cr(VI). 展开更多
关键词 hybrid membrane CHITOSAN silicon dioxide adsorption isotherms kinetics.
下载PDF
Membrane Potentials Across Hybrid Charged Mosaic Membrane in Organic Solutions
4
作者 刘俊生 徐铜文 +1 位作者 祝熙宇 傅延勋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3X期330-336,共7页
关键词 hybrid CHARGED MOSAIC membrane membrane potential EQUILIBRIUM SWELLING degree fixed charge density o
下载PDF
Membrane Potentials Across Hybrid Charged Mosaic Membrane in Organic Solutions
5
作者 刘俊生 徐铜文 +1 位作者 祝熙宇 傅延勋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期330-336,共7页
Membrane potentials across hybrid charged mosaic membrane in organic solutions were measured. Equilibrium swelling degree (SD) and fixed charge density in both organic solutions and water were also determined. Ethyl... Membrane potentials across hybrid charged mosaic membrane in organic solutions were measured. Equilibrium swelling degree (SD) and fixed charge density in both organic solutions and water were also determined. Ethylene glycol, ethanol, n-propanol and glycerol were used as organic solutes; meanwhile 0.001mol-dm^-3 aqueous KCl solution was utilized as a strong electrolyte to measure the electrical difference. Equilibrium swelling degree indicated that it could be affected by the density of organic solutes; while it enhanced with the increasing density of these solutes. The measurement of fixed charge density showed that the membrane had the maximal absolute value in water among these solvents whether for cationic or anionic groups; the difference of dielectric constant between the water and the organic solutes might be responsible for these change trends. It was confirmed that membrane potentials increased with both the increasing concentration of the organic solutions and the elevated pH values. These results demonstrated that the characteristics of the hybrid charged mosaic membrane could be highly impacted by the properties of the organic solutes. A theoretical modal for charged membranes in ternary ion systems of weak electrolyte can be used to explain the above-mentioned phenomena. 展开更多
关键词 hybrid charged mosaic membrane membrane potential equilibrium swelling degree fixed charge density organic solution
下载PDF
Transport Properties of Novel Hybrid Cation-Exchange Membranes on the Base of MF-4SC and Halloysite Nanotubes
6
作者 Anatoly Filippov Daria Khanukaeva +4 位作者 Denis Afonin Galina Skorikova Evgeny Ivanov Vladimir Vinokurov Yuri Lvov 《Journal of Materials Science and Chemical Engineering》 2015年第1期58-65,共8页
The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of ph... The diffusion permeability through new hybrid materials based on a Nafion-type membrane (MF- 4SC) and nanotubes of halloysite is investigated using the Nernst-Planck approach. A method of quantitative evaluation of physicochemical parameters (averaged and individual diffusion coefficients and averaged distribution coefficients of ion pairs in the membrane) of system “electrolyte solution—ion-exchange membrane—water”, which was proposed earlier, is further developed. The parameters of hybrid membranes on the base of MF-4SC and nanotubes of halloysite (5% wt and 8% wt) are obtained from experimental data on diffusion permeability of NaCl solutions using theoretical calculations. New model of three-layer membrane system can be used for refining calculated results with taking into account both diffusive layers. It is shown that adding of halloysite nanotubes into the membrane volume noticeably affects exchange capacity as well as structural and transport characteristics of original perfluorinated membranes. Hybrid membranes on the base of MF-4SC and halloysite nanotubes can be used in fuel cells and catalysis. 展开更多
关键词 Three Layer membrane Model The NERNST-PLANCK Approach Diffusion Permeability Perfluorinated CATION-EXCHANGE membrane hybrid MF-4SC/Halloysite membrane
下载PDF
Reconstructing proton channels via Zr-MOFs realizes highly ion-selective and proton-conductive SPEEK-based hybrid membrane for vanadium flow battery
7
作者 Denghua Zhang Wenjie Yu +11 位作者 Yue Zhang Sihan Cheng Mingyu Zhu Shuai Zeng Xihao Zhang Yifan Zhang Chao Luan Zishen Yu Lansong Liu Kaiyue Zhang Jianguo Liu Chuanwei Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期448-456,I0012,共10页
There is an urgent need to break through the trade-off between proton conductivity and ion selectivity of proton exchange membrane(PEM)in vanadium flow battery(VFB).Proton channels in PEM are the key to controlling th... There is an urgent need to break through the trade-off between proton conductivity and ion selectivity of proton exchange membrane(PEM)in vanadium flow battery(VFB).Proton channels in PEM are the key to controlling the ion sieving and proton conductivity in VFB.Herein,two types of proton channels are reconstructed in the hybrid membrane via introducing modified Zr-MOFs(IM-UIO-66-AS)into SPEEK matrix.Internal proton channels in IM-UIO-66-AS and interfacial proton channels between grafted imidazole groups on Zr-MOFs and SPEEK greatly improve the conductivity of the IM-UIO-66-AS/SPEEK hybrid membrane.More importantly,both reconstructed proton channels block the vanadium-ion permeation to realize enhanced ion selectivity according to the size sieving and Donnan exclusion effects,respectively.Moreover,the hybrid membrane exhibits good mechanical property and dimensional stability.Benefiting from such rational design,a VFB loading with the optimized membrane exhibits enhanced voltage efficiency of 79.9%and outstanding energy efficiency of 79.6%at 200 m A cm^(-2),and keeps a notable cycle stability for 300 cycles in the long-term cycling test.Therefore,this study provides inspiration for preparing next-generation PEMs with high ion selectivity and proton conductivity for VFB application. 展开更多
关键词 Vanadium flow battery hybrid membrane Metal organic framework Proton channel Ion selectivity
下载PDF
New hybrid model of proton exchange membrane fuel cell
8
作者 WANG Rui-min CAO Guang-yi ZHU Xin-jian 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第5期741-747,共7页
Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and ... Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box com-ponent. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC. 展开更多
关键词 Proton exchange membrane fuel cell (PEMFC) Artificial neural network (ANN) hybrid model Physical model
下载PDF
Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor 被引量:12
9
作者 HU Shaowei YANG Fenglin +2 位作者 SUN Cui ZHANG Jianye WANG Tonghua 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第2期142-148,共7页
A membrane aerated biofilm reactor is a promising technology for wastewater treatment. In this study, a carbon-membrane aerated biofilm reactor (CMABR) has been developed, to remove carbon organics and nitrogen simu... A membrane aerated biofilm reactor is a promising technology for wastewater treatment. In this study, a carbon-membrane aerated biofilm reactor (CMABR) has been developed, to remove carbon organics and nitrogen simultaneously from one reactor. The results showed that CMABR has a high chemical oxygen demand (COD) and nitrogen removal efficiency, as it is operated with a hydraulic retention time (HRT) of 20 h, and it also showed a perfect performance, even if the HRT was shortened to 12 h. In this period, the removal efficiencies of COD, ammonia nitrogen (NH4^+-N), and total nitrogen (TN) reached 86%, 94%, and 84%, respectively. However, the removal efficiencies of NH4^+-N and TN declined rapidly as the HRT was shortened to 8 h. This is because of the excessive growth of biomass on the nonwoven fiber and very high organic loading rate. The fluorescence in situ hybridization (FISH) analysis indicated that the ammonia oxidizing bacteria (AOB) were mainly distributed in the inner layer of the biofilm. The coexistence of AOB and eubacteria in one biofilm can enhance the simultaneous removal of COD and nitrogen. 展开更多
关键词 membrane aerated biofilm reactor COD NITROGEN ammonia oxidizing bacteria fluorescence in situ hybridization (FISH)
下载PDF
Study on membrane fouling of submerged membrane bioreactor in treating bathing wastewater 被引量:6
10
作者 GUO Jifeng XIA Siqing +1 位作者 WANG Rongchang ZHAO Jianfu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第10期1158-1167,共10页
A pilot-scale submerged membrane bioreactor (MBR) was used to treat the bathing wastewater for more than 90 d. Several factors a?ecting membrane fouling were studied, including the variation in transmembrane pressure ... A pilot-scale submerged membrane bioreactor (MBR) was used to treat the bathing wastewater for more than 90 d. Several factors a?ecting membrane fouling were studied, including the variation in transmembrane pressure (TMP), changes in extracellular polymeric substance (EPS), and distribution of membrane resistance (R). The relationships between R and EPS concentration were found to be R = 0.00008(EPSS)2.915 in the mixed liquor (EPSS) and R = 0.2853(EPSm) – 0.824 on the membrane surface (EPSm). The constant ... 展开更多
关键词 MBR membrane fouling extracellular polymeric substance (EPS) PCR-DGGE fluorescent in situ hybridization (FISH)
下载PDF
Emerging R&D on membranes and systems for water reuse and desalination 被引量:3
11
作者 Tai-Shung Chung Dieling Zhao +4 位作者 Jie Gao Kangjia Lu Chunfeng Wan Martin Weber Christian Maletzko 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1578-1585,共8页
Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy... Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy consumption and fouling propensity for broad sustainable applications.In addition,different membranes face various challenges in their specific applications during long-term operations.In this short review,we will summarize the recent progresses in emerging membrane technologies and system integration to advance and sustain water reuse and desalination with discussion on their challenges and perspectives. 展开更多
关键词 membrane technology Water REUSE DESALINATION hybrid system NANOMATERIALS
下载PDF
Operating Conditions Optimization on Indonesian "Batik" Dyes Wastewater Treatment by Fenton Oxidation and Separation Using Ultrafiltration Membrane
12
作者 Nita Kusumawati Asri Wiiiastuti Erina Rahmadyanti 《Journal of Environmental Science and Engineering(A)》 2012年第5期672-682,共11页
Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose ... Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose of this study was to determine the effect of membrane characteristics, feed solution pH, operating pressure of "Dead-end" membrane reactor, and the frequency of membranes which uses on the percentage of COD reduction in "batik" wastewater. In this study, the filtrate from wastewater pre-treatment with Fenton oxidation, both without and with addition of activated carbon, is passed to the ultrafiltration (UF) separation system. Fenton oxidation process was carried out at optimum conditions, i.e. at pH 3, temperature 50 ℃, and the addition FeSO4·7H2O and H2O2 at 747-830 mg/L and 1,168-1,460 mg/L, respectively. The optimum reduction percentage of COD can be achieved when the membranes used for separation has a pore size of 0.01 to 0.015 lam, feed solution pH 2, operating pressure 1 atm and frequency of membranes uses I x. To determine the fouling potential on ultrafiltration membranes that are used, flux measurements were performed 3 times for each membrane. These stages can see that the flux decline reached 22.5% when the effluent filtered directly to the membrane; 17.3% when performed pre-treatment prior to separation processes using membranes and 10% when combined pre-treatment process, use of activated carbon and the separation using ultrafiltration membranes. 展开更多
关键词 hybrid process fenton oxidation ultrafiltration membranes FLUX fouling.
下载PDF
Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles
13
作者 Yayun Zhao Dechuan Zhao +3 位作者 Chunlong Kong Yichao Lin Xuezhen Wang Liang Chen 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第2期83-92,共10页
Metal-organic framework/organosilica hybrid membranes on tubular ceramic substrates have shown great potential for the implementation of membrane technology in practical gas separation projects due to their higher per... Metal-organic framework/organosilica hybrid membranes on tubular ceramic substrates have shown great potential for the implementation of membrane technology in practical gas separation projects due to their higher permeance compared to commercial polymers.However,the selectivities of the reported membranes are moderate.Here,we have incorporated urea-modulated metal-organic frameworks into organosilica membranes to greatly enhance its separation performance.The urea-modulated metal-organic frameworks exhibit less-defined edges of crystallographic facets and high defect density.They can be well-dispersed in the organosilica layer,which substantially suppresses the interfacial defects between metal-organic frameworks and organosilica,which is beneficial for improving the selectivity of membranes for gas separation.The results have shown that the enhanced ideal selectivity of H_(2)/CH_(4) was 165 and that of CO_(2)/CH_(4) was 43,with H_(2) permeance of about 1.25×10^(−6) mol·m^(−2)·s^(−1)·Pa^(−1) and CO_(2) permeance of 3.27×10^(−7) mol·m^(−2)·s^(−1)·Pa^(−1) at 0.2 MPa and 25℃.In conclusion,the high level of hybrid membranes can be used to separate H_(2)(or CO_(2))from the binary gas mixture H_(2)/CH_(4)(or CO_(2)/CH_(4)),which is important for gas separation in practical applications.Moreover,the simple and feasible modulation of metal-organic framework is a promising strategy to tune different metal-organic frameworks for membranes according to the actual demands. 展开更多
关键词 ZIF-8 nanocrystals UREA ORGANOSILICA hybrid membrane enhanced separation performance
原文传递
Hybrid nanoarchitectonics of TiO_(2)/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation
14
作者 Wenhao Wang Guangpu Zhang +4 位作者 Qiufeng Wang Fancang Meng Hongbin Jia Wei Jiang Qingmin Ji 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期188-191,共4页
TiO_(2)-based films are one of the most attractive photocatalysts owing to their highly cost-effective properties.Nevertheless,most TiO_(2)-based photocatalytic films for dye degradation are in the form of robust film... TiO_(2)-based films are one of the most attractive photocatalysts owing to their highly cost-effective properties.Nevertheless,most TiO_(2)-based photocatalytic films for dye degradation are in the form of robust films(without flexibility),TiO_(2)coatings on carbon matrix(with leakage risk),or surface-covered TiO_(2)hybrids(not favorite to contact with external molecules).Therefore,the development of durable and highly efficient TiO_(2)photocatalytic films for dye degradation is still needed.Here,we fabricated soft photocatalytic hybrid membranes(TANFs)from TiO_(2)nanotubes(Ti NT)and aramid nanofiber(ANF)by a facile vacuum filtration process.The similar morphology and dimension of Ti NT and ANF enable them intricately intertwine with each other in the membrane network.Under an appropriate mixing ratio,the TANF exhibited significantly improved optical and mechanical properties.When used for dye degradation,the membrane showed excellent photocatalytic performance and could keep stable activity and integrated state for repeated usage. 展开更多
关键词 Titanium dioxide nanotube Aramid nanofiber Flexible hybrid membrane PHOTOCATALYSIS Dye degradation
原文传递
Synthesis/design optimization of SOFC-PEM hybrid system under uncertainty
15
作者 谭玲君 杨晨 周娜娜 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期128-137,共10页
Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving inp... Solid oxide fuel cell–proton exchange membrane(SOFC–PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving input values should be considered at the early stage of process optimization. We present in this paper a generalized framework of multi-objective optimization under uncertainty for the synthesis/design optimization of the SOFC–PEM hybrid system. The framework is based on geometric, economic and electrochemical models and focuses on evaluating the effect of uncertainty in operating parameters on three conflicting objectives: electricity efficiency, SOFC current density and capital cost of system. The multi-objective optimization provides solutions in the form of a Pareto surface, with a range of possible synthesis/design solutions and a logical procedure for searching the global optimum solution for decision maker. Comparing the stochastic and deterministic Pareto surfaces of different objectives, we conclude that the objectives are considerably influenced by uncertainties because the two trade-off surfaces are different. 展开更多
关键词 Solid oxide fuel cell Proton exchange membrane fuel cell hybrid system UNCERTAINTY OPTIMIZATION
下载PDF
MBR与HMBR除污效能及相关功能微生物对比研究
16
作者 李莹 刘强 +3 位作者 项玮 曲吉祥 杨翠萍 范秀磊 《工业水处理》 CAS CSCD 北大核心 2024年第7期156-161,共6页
复合式膜生物反应器(Hybrid membrane bioreactor,HMBR)是在膜生物反应器(Membrane bioreactor,MBR)中引入悬浮生物膜载体。利用高通量测序及相关分析软件筛选出具有降碳、脱氮、除磷功能的微生物,对比HMBR、MBR内微生物群落结构差异,... 复合式膜生物反应器(Hybrid membrane bioreactor,HMBR)是在膜生物反应器(Membrane bioreactor,MBR)中引入悬浮生物膜载体。利用高通量测序及相关分析软件筛选出具有降碳、脱氮、除磷功能的微生物,对比HMBR、MBR内微生物群落结构差异,结合两种反应器各自最优工况下对污染物去除效果,探究二者除污效能存在差异的原因。试验结果表明,HMBR的除污性能优于MBR,且MBR与HMBR污染物降解机制不同。HMBR拥有更优运行性能的原因在于HMBR内部拥有物种更加丰富、分布更加均匀、数量更多的微生物群落,相关功能菌在HMBR内增殖明显,尤其是悬浮填料的投加带来了功能菌的额外增量,从而提升了HMBR的污染物降碳、脱氮、除磷效能。 展开更多
关键词 膜生物反应器 复合式膜生物反应器 微生物群落结构 功能菌 除污效能
下载PDF
体外膜肺氧合混合转流模式在肺移植患者中的应用
17
作者 曾妃 兰美娟 +2 位作者 郑叶平 梁江淑渊 顾培培 《中华急危重症护理杂志》 CSCD 2024年第1期43-46,共4页
总结6例肺移植患者行体外膜肺氧合混合转流模式的护理经验。针对该组肺移植患者体外膜肺氧合混合模式转流过程复杂、管理难度大、安全隐患多的问题,采取如下护理措施:建立体外膜肺氧合流转专项工作机制,医护高效配合;精准化流量调节确... 总结6例肺移植患者行体外膜肺氧合混合转流模式的护理经验。针对该组肺移植患者体外膜肺氧合混合模式转流过程复杂、管理难度大、安全隐患多的问题,采取如下护理措施:建立体外膜肺氧合流转专项工作机制,医护高效配合;精准化流量调节确保有效心肺支持;清晰标识管路管理确保患者安全;多模式监测神经系统症状;密切监测并发症发生。经过精细化护理,6例患者在ECMO转流期间均未出现相关并发症,顺利撤机。 展开更多
关键词 肺移植 体外膜肺氧合 混合式 转流 危重病护理
下载PDF
SiO_(2)@GO杂化膜的制备及其渗透汽化脱盐性能研究
18
作者 展侠 杨雨均 +1 位作者 聂明雪 高仲勇 《化工新型材料》 CAS CSCD 北大核心 2024年第7期93-97,103,共6页
以渗透汽化膜法脱盐为研究背景,针对目前氧化石墨烯膜(GOM)易溶胀、稳定性差和渗透通量衰减等缺点,采用疏水、亲水、原位合成方法制备了3种纳米二氧化硅(SiO_(2))对GOM进行插层修饰,进而制备SiO_(2)@氧化石墨烯(SiO_(2)@GO)膜。通过傅... 以渗透汽化膜法脱盐为研究背景,针对目前氧化石墨烯膜(GOM)易溶胀、稳定性差和渗透通量衰减等缺点,采用疏水、亲水、原位合成方法制备了3种纳米二氧化硅(SiO_(2))对GOM进行插层修饰,进而制备SiO_(2)@氧化石墨烯(SiO_(2)@GO)膜。通过傅里叶红外变换光谱仪(FT-IR)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、接触角测量仪等方法表征其化学组分、形貌、晶体结构和亲水性。渗透汽化脱盐实验表明,疏水性SiO_(2)@GO杂化膜脱盐性能优于亲水性SiO_(2)@GO和原位制备SiO_(2)@GO膜,且当SiO_(2)与GO质量比为0.2时,疏水性SiO_(2)@GO杂化膜水通量可达103.4kg/(m^(2)·h),盐截留率为99.8%(70℃,3.5%NaCl溶液),在连续12h测试中分离性能保持稳定,表明疏水性SiO_(2)@GO杂化膜在渗透汽化脱盐领域有着广阔的应用前景。 展开更多
关键词 二氧化硅 氧化石墨烯 杂化膜 渗透汽化 脱盐
下载PDF
考虑耐久性的PEM燃料电池有轨电车自适应优化控制策略
19
作者 高锋阳 刘嘉 +2 位作者 韩国鹏 齐丰旭 刘庆寅 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第4期569-578,共10页
针对燃料电池/锂电池/超级电容混合储能有轨电车在动态负载、启停循环、怠速循环、大功率运行时质子交换膜(PEM)燃料电池寿命衰减情况,提出Pontryagin极小值原理(PMP)与耐久性结合的能量管理策略。通过启停控制策略控制燃料电池的启动... 针对燃料电池/锂电池/超级电容混合储能有轨电车在动态负载、启停循环、怠速循环、大功率运行时质子交换膜(PEM)燃料电池寿命衰减情况,提出Pontryagin极小值原理(PMP)与耐久性结合的能量管理策略。通过启停控制策略控制燃料电池的启动与停止,有效降低燃料电池启动次数;利用储能系统总体氢气消耗为经济性代价,燃料电池性能衰退指数为耐久性代价,构建联合代价函数;在满足期望条件下,实现协态变量随荷电状态实时变化的在线适应;将所提策略与传统极小值策略和状态机策略进行仿真对比。结果表明:城市循环工况中所提策略较于传统Pontryagin策略燃料电池峰值电流降低了33.2%,氢气消耗下降了12.50%;郊区循环工况中所提策略较传统Pontryagin策略峰值电流降低了21.88%,氢气消耗下降了40.39%。所提管理策略在不同工况下均有良好的适应能力,解决了传统PMP只能离线应用的缺点,将启停次数控制在较低水平,具有延寿燃料电池的能力。 展开更多
关键词 混合动力有轨电车 Pontryagin极小值原理(PMP) 质子交换膜(PEM)燃料电池 耐久性
下载PDF
超滤-纳滤双膜工艺深度净化天然雨水试验 被引量:1
20
作者 郝文冉 来存贤 +3 位作者 朱学武 成小翔 徐景涛 武道吉 《净水技术》 2024年第1期74-80,共7页
随着人口数量增长与城市工业化进程的不断加快,对水资源的需求日益剧增。为了缓解水资源压力同时减轻城市排水系统的负担,开展了超滤-纳滤双膜工艺深度净化天然雨水的试验,探究了双膜工艺对天然雨水的水质净化效果。结果表明,超滤-纳滤... 随着人口数量增长与城市工业化进程的不断加快,对水资源的需求日益剧增。为了缓解水资源压力同时减轻城市排水系统的负担,开展了超滤-纳滤双膜工艺深度净化天然雨水的试验,探究了双膜工艺对天然雨水的水质净化效果。结果表明,超滤-纳滤双膜工艺可以有效降低雨水中污染物含量,对UV_(254)、总溶解性固体、总有机碳和电导率的平均去除率分别为87.5%、66.7%、32.0%和61.4%。双膜技术实现了对雨水中固体颗粒和溶解性有机物的高效去除,同时对荧光类有机物也显示出优异的截留效果。相比于常规的水处理工艺(混凝-沉淀-过滤工艺),双膜技术因具有出水水质优异、无二次污染、处理效率高等优势,在雨水的高效分离和资源化利用领域展现出较大的应用潜力。 展开更多
关键词 超滤(UF) 纳滤(NF) 双膜工艺 雨水 水资源回用
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部