期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of nano-voids and nano-cracks on the elastic properties of a host medium: xfem modeling with level-set function and free surface energy 被引量:2
1
作者 B.E. Hachi D. Hachi M. Haboussi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第4期799-811,共13页
This work deals with the influences of nano-heterogeneities in the form of voids/cavities or cracks on the elastic (please confirm which word is correct. effective or elastic? According to the title of paper, I choose... This work deals with the influences of nano-heterogeneities in the form of voids/cavities or cracks on the elastic (please confirm which word is correct. effective or elastic? According to the title of paper, I choose elastic.) properties of a host medium. With a relatively large ratio of apparent-surface to volume and particularly strong physical interactions with the surrounding medium at nano-scale, nano-heterogeneities can potentially affect the elastic(effective or elastic?) properties of the parent medium (matrix) containing them in a significant manner. This has been reported by various theoretical and experimental studies, some of them are discussed in the present paper. To describe the positive (reinforcement) or negative (degradation) effect of the nano-heterogeneities from the modeling perspective, it is necessary to take into account the energy of interfaces/surfaces between nano-heterogeneities and the matrix which, by the fact of the relatively large extent of their apparent surface and their strong physical interaction with their neighborhood, can no longer be neglected compared to those of the volume energy. Thus, to account for the effects of interfaces/surfaces in a nanostructured heterogeneous medium, the coherent interface model is considered in the present investigation within a periodic homogenization procedure. In this interface/surface model, the displacement vector is assumed to be continuous across the interface while the stress vector is considered to be discontinuous and satisfying the Laplace-Young equations. To solve these equations coupled to the classical mechanical equilibrium problem, a numerical simulation tool is developed in a two-dimensional (2D) context using the eXtended Finite Element Method (XFEM) and the Level-Set functions. The developed numerical tool is then used to carry out a detailed analysis about the effect of nano-heterogeneities on the overall mechanical properties of a medium. The nano-heterogeneities are present in the medium initially as cylindrical cavities (circular in 2D) before being reduced to plane cracks (line in 2D) by successive flattenings. 展开更多
关键词 Interface/Surface ENERGY XFEM LEVEL-SET FUNCTION Periodic homogenization Nano-voids/Nano-cavities Nano-cracks nano-inclusions/Nano-heterogeneities
下载PDF
Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
2
作者 曹正 傅晴俏 +7 位作者 顾辉 田震 新巴雅尔 邢娟娟 苗蕾 王晓欢 刘慧敏 王俊 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期469-475,共7页
Strontium titanate(SrTiO_(3))is a thermoelectric material with large Seebeck coefficient that has potential applications in high-temperature power generators.To simultaneously achieve a low thermal conductivity and hi... Strontium titanate(SrTiO_(3))is a thermoelectric material with large Seebeck coefficient that has potential applications in high-temperature power generators.To simultaneously achieve a low thermal conductivity and high electrical conductivity,polycrystalline SrTiO_(3)with a multi-scale architecture was designed by the co-doping with lanthanum,cerium,and niobium.High-quality nano-powders were synthesized via a hydrothermal method.Nano-inclusions and a nano/micro-sized second phase precipitated during sintering to form mosaic crystal-like and epitaxial-like structures,which decreased the thermal conductivity.Substituting trivalent Ce and/or La with divalent Sr and substituting pentavalent Nb with tetravalent Ti enhanced the electrical conductivity without decreasing the Seebeck coefficient.By optimizing the dopant type and ratio,a low thermal conductivity of 2.77 W·m^(-1)·K^(-1)and high PF of 1.1 mW·m^(-1)·K^(-2)at 1000 K were obtained in the sample co-doped with 5-mol%La,5-mol%Ce,and 5-mol%Nb,which induced a large ZT of 0.38 at 1000 K. 展开更多
关键词 strontium titanate multiple-doping multi-scale microstructure nano-inclusions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部