The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag...The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.展开更多
A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were in...A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.展开更多
In organic-rich gas shales, clay minerals and organic matter(OM) have significant influences on the origin, preservation, and production of shale gas. Because of the substantial role of nanoscale pores in the generati...In organic-rich gas shales, clay minerals and organic matter(OM) have significant influences on the origin, preservation, and production of shale gas. Because of the substantial role of nanoscale pores in the generation,storage, and seepage of shale gas, we examined the effects of clay minerals and OM on nanoscale pore distribution characteristics in Lower Paleozoic shale gas reservoirs.Using the Niutitang and Longmaxi shales as examples, we determined the effects of clay minerals and OM on pores through sedimentation experiments. Field emission–scanning electron microscopy combined with low-pressure N2 adsorption of the samples before and after sedimentation showed significant differences in pore location and pore size distribution between the Niutitang and Longmaxi shales. Nanoscale pores mostly existed in OM in the Longmaxi shale and in clay minerals or OM–clay composites in the Niutitang shale. The distribution differences were attributed largely to variability in thermal evolution and tectonic development and might account for the difference in gas-bearing capacity between the Niutitang and Longmaxi reservoirs. In the nanoscale range, mesopores accounted for 61–76% of total nanoscale pore volume.Considerably developed nanoscale pores in OM were distributed in a broad size range in the Longmaxi shale, which led to good pore connectivity and gas production.Numerous narrow pores(i.e., pores \ 20 nm) in OM–clay composites were found in the Niutitang shale, and might account for this shale's poor pore connectivity and low gas production efficiency. Enhancing the connectivity of the mesopores(especially pores \ 20 nm and those developed in OM–clay composites) might be the key to improving development of the Niutitang shale. The findings provide new insight into the formation and evolutionary mechanism of nanoscale pores developed in OM and clay minerals.展开更多
To study the formation of layer shaped pores in TiC Fe cermet, two Ti C Fe powder compacts containing Ti powders with two size ranges (< 44μm and 135~ 154μm ) respectively were ignited in a special ignition mode...To study the formation of layer shaped pores in TiC Fe cermet, two Ti C Fe powder compacts containing Ti powders with two size ranges (< 44μm and 135~ 154μm ) respectively were ignited in a special ignition mode. The combustion temperatures of the reactions were measured, the phase constituents of the combustion synthesized products were inspected by X ray diffractometry (XRD), and the structures of the products were observed with scanning electron microscope (SEM). In the case of the finer Ti powder used, TiC Fe cermet and pore rank in an alternately laminar shape, and the shape of the pore is the same as that of the combustion wavefront, implying that the layer shaped pore results from a gather of the retained gas into the combustion wavefront. While in the case of the coarser Ti powder used, the lower combustion temperature causes the gather of the retained gas to be difficult, the pore being present in an arbitrary shape and distributing randomly.展开更多
This paper deals with the effect of water depth in the range of 10 m to 80 m upon the formation of pores produced during underwater wet welding. The results show that it is easy for the inner pores to occur owing to t...This paper deals with the effect of water depth in the range of 10 m to 80 m upon the formation of pores produced during underwater wet welding. The results show that it is easy for the inner pores to occur owing to the particularity of the molten metal solidification that the outer pores begin to appear when the water depth increases to about 60 m, that the porosity increases and pore grows up as the water depth increases, and that pores are all hydrogen-containing ones through the examination of the variation of number of pores with the residual hydrogen and oxygen content in the weld metal.展开更多
The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional reso...The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional resources are becoming increasingly urgent. The Qingshankou Formation consists of typical Upper Cretaceous continental strata, and represents a promising and practical replacement resource for shale oil in the Songliao Basin. Previous studies have shown that low-mature to mature Qingshankou shale mainly preserves type Ⅰ and type Ⅱ1 organic matter, with relatively high total organic carbon(TOC) content. It is estimated that there is a great potential to explore for shale oil resources in the Qingshankou Formation in this basin. However, not enough systematic research has been conducted on pore characteristics and their main controlling factors in this lacustrine shale reservoir. In this study, 19 Qingshankou shales from two wells drilled in the study area were tested and analyzed for mineral composition, pore distribution and feature evolution using Xray diffraction(XRD), scanning electron microscopy(SEM), low-pressure nitrogen gas adsorption(N2-GA), and thermal simulation experiments. The XRD results show that clay, quartz, and feldspar are the dominant mineral constituents of Qingshankou shale. The clay minerals are mostly illite/smectite mixed layers with a mean content of 83.5%, followed by illite, chlorite, and kaolinite. There are abundant deposits of clay-rich shale in the Qingshankou Formation in the study area, within which many mineral and organic matter pores were observed using SEM. Mineral pores contribute the most to shale porosity;specifically, clay mineral pores and carbonate pores comprise most of the mineral pores in the shale. Among the three types of organic matter pores, type B is more dominant the other two. Pores with diameters greater than 10 nm supply the main pore volume;most are half-open slits and wedge-shaped pores. The total pore volume had no obvious linear relationship with TOC content, but had some degree of positive correlation with the content of quartz + feldspar and clay minerals respectively. However, it was negatively correlated with carbonate mineral content. The specific surface area of the pores is negatively related to TOC content, average pore diameter, and carbonate mineral content. Moreover, it had a somewhat positive correlation with clay mineral content and no clear linear relationship with the content of quartz + feldspar. With increases in maturity, there was also an increase in the number of carbonate mineral dissolution pores and organic matter pores, average pore diameter, and pore volume, whereas there was a decrease in specific surface area of the pores. Generally, the Qingshankou shale is at a low-mature to mature stage with a TOC content of more than 1.0%, and could be as thick as 250 m in the study area. Pores with diameters of more than 10 nm are well-developed in the shale. This research illustrates that there are favorable conditions for shale oil occurrence and enrichment in the Qingshankou shale in the study area.展开更多
Al-base surface self-lubricating composites need thick and hard alumina membranes with large pores to add lubricants easily. This kind of porous alumina layer was fabricated in additive-containing, phosphoric acid-bas...Al-base surface self-lubricating composites need thick and hard alumina membranes with large pores to add lubricants easily. This kind of porous alumina layer was fabricated in additive-containing, phosphoric acid-based solution. The effects of additive containing organic carboxylic acid and Ce salt on the properties of the oxide film and mechanism were investigated in detail with SEM and EDAX analyses. The results show that the pore diameter is about 100 nm, the film thickness increases by 4 -5 times, and the Vickers hardness improves by about 50% through adding some amount of organic carboxylic acid and Ce salt. Such an improvement in properties is explained in terms of a lower film dissolving velocity and better film quality in compound solution.展开更多
In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorp...In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied.In this study,the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin,China.The results show that the characteristics of pore structure will affect the methane adsorption characteristics.The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores.The groove space inside the pore will change the density distribution of methane molecules in the pore,greatly improve the adsorption capacity of the pore,and increase the pressure sensitivity of the adsorption process.Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size,all pores have the strongest methane adsorption capacity when the pore size is about 2 nm.In addition,the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics.The pore adsorption capacity first increases and then decreases with the increase of pressure,and increases with the increase of temperature.In the early stage of thermal evolution,pore adsorption capacity is strong and pressure sensitivity is weak;while in the late stage,it is on the contrary.展开更多
The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried ...The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried out a comprehensive analy-sis of the vast amount of data from casting thin sections, scanning electron microscope and physical data. Then we analyzed the pore types, pore evolution, distribution and genesis of secondary pores in our study area and discussed the factors controlling the distribution of secondary pores. The results show that pores in the study area are largely composed of intergranular dissolution pores and constituent dissolved pores. Three secondary pore zones were developed in the study area at depths of 2800~3400 m, 3600~4200 m and 4500~4800 m. Secondary pores have been formed mainly because carbonate cement, feldspar, clastic debris and other plastic substances were dissolved by organic acid, released during the evolution of organic matter and acid water formed by CO2. The development and distribution of secondary pores are vertically controlled by the maturity time of source rocks and hori-zontally by the distribution of acid water. As well, this distribution was affected by the sedimentary facies belt and the development of fault zones.展开更多
The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam(HCPEB)irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1–1...The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam(HCPEB)irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1–1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.展开更多
Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance ...Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS.展开更多
The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carr...The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.展开更多
Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18...Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18 CBM wells in Zhengzhuang in Jincheng and their fissures and pores were observed by a Scanning Electron Microscope(SEM).To the naked eyes and by SEM,the pores in the Jincheng anthracite are seen to have abundant mold pores with isolated,shallow and poor connectivity(diameters between 1~50 μm) and few plant tissue pores,gas pores,and solution pores.Most of the fissures are filled with clay minerals or closed;while open fissures are not often visible in the Jincheng coal(aperture between 3~10 μm).These characteristics are determined by the high rank and high vitrinite content of the coal.The existence of too many mold pores and filled fissures does not allow the migration of methane,hence hydraulic fracture stimulation will be required and is an effective method of adding and connecting fissures to enhance CBM production.展开更多
Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecul...Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecular model was built. According to mathematical statistics, the validation of the model was solved by converting it into a mathematical formula. It is found by SEM that the pores in clay mineral layers and organic pores occupy most of the pores in shale; the nitrogen adsorption experiment at low temperature reveals that groove pores formed by flaky particles and micro-pores are the main types of pores, and the results of the two are in good agreement. A molecular model was established by illite and graphene molecular structures. Moreover, based on the fractal theory and the Frenkel-Halsey-Hill formula, a modified Frenkel-Halsey-Hill formula was proposed. The reliability of the molecular model was verified to some extent by obtaining parameters such as the fractal dimension, replacement rate and fractal coefficients of correction, and mathematical calculation. This study provides the theoretical basis for quantitative study of shale reservoirs.展开更多
In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study t...In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study the macerals,organic pores and connectivity of organic pores in the lower Paleozoic organic-rich shale samples from Southern China.Combined with the mechanism of hydrocarbon generation and expulsion and pore forming mechanism of organic matter-based activated carbon,the relationships between organic pore development and the organic matter type,hydrocarbon generation process,diagenesis and pore pressure were explored to reveal the controlling factors of the formation,preservation and connectivity of organic pores in shale.(1)The generation of organic pores goes on through the whole hydrocarbon generation process,and is controlled by the type,maturity and decomposition of organic matter;the different hydrocarbon generation components and differential hydrocarbon-generation evolution of kerogen and solid asphalt lead to different pore development characteristics;organic pores mainly develop in solid bitumen and hydrogen-rich kerogen.(2)The preservation of organic pores is controlled by maturity and diagenesis,including the steric hindrance effect of in-situ hydrocarbon retention,rigid mineral framework formed by recrystallization,the coupling mechanism of pore-fluid pressure and shale brittleness-ductility transition.(3)The Ro of 4.0%is the maturity threshold of organic pore extinction,the shale layers with Ro larger than 3.5%have high risk for shale gas exploration,these shale layers have low gas contents,as they were in an open state before uplift,and had high hydrocarbon expulsion efficiency and strong aromatization,thus having the"congenital deficiency"of high maturity and pore densification.(4)The pores in the same organic matter particle have good connectivity;and the effective connectivity between different organic matter pores and inorganic pores and fractures depends on the abundance and distribution of organic matter,and development degree of pores and fractures in the shale;the accumulation,preservation and laminar distribution of different types of organic matter in high abundance is the prerequisite for the development and connection of organic pores,grain margin fractures and bedding fractures in reservoir.展开更多
1.Objective Yican 1 well, drilled in Southeastern Ordos Basin by Oil & Gas Survey, China Geological Survey in 2014 produced 3.7×104 m3 natural gas daily, which is the most productive well in the area by far. ...1.Objective Yican 1 well, drilled in Southeastern Ordos Basin by Oil & Gas Survey, China Geological Survey in 2014 produced 3.7×104 m3 natural gas daily, which is the most productive well in the area by far. However, the reservoir quality is poor compared with those of Jingbian gas field in the middle of the Basin, which is mainly caused by the pores filling in karst reservoir.展开更多
Organic matter(OM)hosted pores are crucial for the storage and migration of petroleum in shale reservoirs.Thermal maturity and macerals type are important factors controlling the development of pores therein.In this s...Organic matter(OM)hosted pores are crucial for the storage and migration of petroleum in shale reservoirs.Thermal maturity and macerals type are important factors controlling the development of pores therein.In this study,six lacustrine shale samples with different thermal maturities from the first member of the Qingshankou Formation in the Songliao Basin,of which vitrinite reflectance(R_(o))ranging from 0.58% to 1.43%,were selected for a comparative analysis.Scanning electron microscopy(SEM)and reflected light microscopy were combined to investigate the development of organic pores in different macerals during thermal maturation.The results show that alginite and liptodetrinite are the dominant primary macerals,followed by bituminite.Only a few primary organic pores developed in the alginite at the lowest maturity(R_(o)=0.58%).As a result of petroleum generation,oil-prone macerals began to transform to initial-oil solid bitumen at the early oil window(R_(o)=0.73%)and shrinkage cracks were observed.Initial-oil solid bitumen cracked to oil,gas and post-oil bitumen by primary cracking(R_(o)=0.98%).Moreover,solid bitumen(SB)was found to be the dominant OM when R_(o)>0.98%,which indicates that SB is the product of oil-prone macerals transformation.Many secondary bubble pores were observed on SB,which formed by gas release,while devolatilization cracks developed on migrated SB.Additionally,at the late oil window(Ro?1.16%),migrated SB filled the interparticle pore spaces.With further increase in temperature,the liquid oil underwent secondary cracking into pyrobitumen and gas,and spongy pores developed on the pyrobitumen at higher levels of maturity(Ro=1.43%),which formed when pyrobitumen cracked into gas.Vitrinite and inertinite are stable without any visible pores over the range of maturities,verifying their low petroleum generation potential.In addition,it was concluded that clay minerals could have a catalytic effect on the petroleum generation,which may explain why organicclay mixtures had more abundant pores than single OM particles.However,after R_(o)>0.98%,authigenic minerals occupied the organic pore spaces on the organic-clay mixtures,resulting in fewer pores compared to those observed in samples at the early to peak oil window.展开更多
The sealing performance of a bentonite barrier is highly dependent on its seepage characteristics, which are directly related to the characteristics of its pore structure. Based on scanning electron microscopy(SEM) an...The sealing performance of a bentonite barrier is highly dependent on its seepage characteristics, which are directly related to the characteristics of its pore structure. Based on scanning electron microscopy(SEM) and focused ion beam-SEM(FIB-SEM), the pore structure of bentonite was characterized at different scales. First, a reasonable gray threshold was determined through back analysis, and the image was binarized based on the threshold. In addition, binary images were used to analyze bentonite’s pore structure(porosity and pore size distribution). Furthermore, the effects of different algorithms on the pore structure characterization were evaluated. Then, permeability calculations were performed based on the previous pore structure characteristics and a modified permeability prediction model. For permeability prediction based on the three-dimensional model, the effect of pore tortuosity was also considered. Finally, the accuracy of numerical calculations was verified by conducting macroscopic gas and alcohol permeability experiments. This approach provides a better understanding of the microscale mechanism of gas transport in bentonite and the importance of pore structures at different scales in determining its seepage characteristics.展开更多
To deal with the problems encountered in the large scale numerical simulation of three dimensional(3D)elastic solids with fluid-filled pores,a novel computational model with the corresponding iterative solution proced...To deal with the problems encountered in the large scale numerical simulation of three dimensional(3D)elastic solids with fluid-filled pores,a novel computational model with the corresponding iterative solution procedure is developed,by introducing Eshelby’s idea of eigenstrain and equivalent inclusion into the boundary integral equations(BIE).Moreover,by partitioning all the fluid-filled pores in the computing domain into the near-and the far-field groups according to the distances to the current pore and constructing the local Eshelby matrix over the near-field group,the convergence of iterative procedure is guaranteed so that the problem can be solved effectively and efficiently in the numerical simulation of solids with large numbers of fluid-filled pores.The feasibility and correctness of the proposed computational model are verified in the numerical examples in comparison with the results of the analytical solution in the case of a single spherical fluid-filled pore under uniform pressure in full space and with the results of the subdomain BIE in a number of other cases.The overall mechanical properties of solids are simulated using a representative volume element(RVE)with a single or multiple fluid-filled pores,up to one thousand in number,with the proposed computational model,showing the feasibility and high efficiency of the model.The effect of random distribution of fluid-filled on overall properties is also discussed.Through some examples,it is observed that the effective elastic properties of solids with a large number of fluid-filled pores in random distributions could be studied to some extent by those of solids with regular distributions.展开更多
Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tra...Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.展开更多
基金supported by the National Natural Science Foundation of China (22379157,22179139)the Key Research and Development (R&D) Projects of Shanxi Province(202102040201003)+1 种基金the Research Program of Shanxi Province(202203021211203)the ICC CAS (SCJC-XCL-2023-10 and SCJC-XCL-2023-13)
文摘The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.
文摘A novel negative thermal expansion(NTE) material NdMnO_(3) was synthesized by solid-state method at 1 523 K. The crystal structure, phase transition, pores effect and negative expansion properties of NdMnO_(3) were investigated by variable temperature X-ray diffraction(XRD), scanning electron microscope(SEM) and variable temperature Raman spectra. The compound exhibits NTE properties in the orderly O' phase crystal structure. When the temperature is from 293 to 759 K, the ceramic NdMnO_(3) shows negative thermal expansion of-4.7×10^(-6)/K. As temperature increases, the ceramic NdMnO_(3) presents NTE property range from 759 to 1 007 K. The average linear expansion coefficient is-18.88×10^(-6)/K. The physical mechanism of NTE is discussed and clarified through experiments.
基金supported by the Chinese Academy of Sciences (‘‘Hundred Talents Program’’)the National Natural Science Foundation of China (41473064)the State Key Laboratory of Ore Deposit Geochemistry (SKLODG-ZY125-09)
文摘In organic-rich gas shales, clay minerals and organic matter(OM) have significant influences on the origin, preservation, and production of shale gas. Because of the substantial role of nanoscale pores in the generation,storage, and seepage of shale gas, we examined the effects of clay minerals and OM on nanoscale pore distribution characteristics in Lower Paleozoic shale gas reservoirs.Using the Niutitang and Longmaxi shales as examples, we determined the effects of clay minerals and OM on pores through sedimentation experiments. Field emission–scanning electron microscopy combined with low-pressure N2 adsorption of the samples before and after sedimentation showed significant differences in pore location and pore size distribution between the Niutitang and Longmaxi shales. Nanoscale pores mostly existed in OM in the Longmaxi shale and in clay minerals or OM–clay composites in the Niutitang shale. The distribution differences were attributed largely to variability in thermal evolution and tectonic development and might account for the difference in gas-bearing capacity between the Niutitang and Longmaxi reservoirs. In the nanoscale range, mesopores accounted for 61–76% of total nanoscale pore volume.Considerably developed nanoscale pores in OM were distributed in a broad size range in the Longmaxi shale, which led to good pore connectivity and gas production.Numerous narrow pores(i.e., pores \ 20 nm) in OM–clay composites were found in the Niutitang shale, and might account for this shale's poor pore connectivity and low gas production efficiency. Enhancing the connectivity of the mesopores(especially pores \ 20 nm and those developed in OM–clay composites) might be the key to improving development of the Niutitang shale. The findings provide new insight into the formation and evolutionary mechanism of nanoscale pores developed in OM and clay minerals.
文摘To study the formation of layer shaped pores in TiC Fe cermet, two Ti C Fe powder compacts containing Ti powders with two size ranges (< 44μm and 135~ 154μm ) respectively were ignited in a special ignition mode. The combustion temperatures of the reactions were measured, the phase constituents of the combustion synthesized products were inspected by X ray diffractometry (XRD), and the structures of the products were observed with scanning electron microscope (SEM). In the case of the finer Ti powder used, TiC Fe cermet and pore rank in an alternately laminar shape, and the shape of the pore is the same as that of the combustion wavefront, implying that the layer shaped pore results from a gather of the retained gas into the combustion wavefront. While in the case of the coarser Ti powder used, the lower combustion temperature causes the gather of the retained gas to be difficult, the pore being present in an arbitrary shape and distributing randomly.
文摘This paper deals with the effect of water depth in the range of 10 m to 80 m upon the formation of pores produced during underwater wet welding. The results show that it is easy for the inner pores to occur owing to the particularity of the molten metal solidification that the outer pores begin to appear when the water depth increases to about 60 m, that the porosity increases and pore grows up as the water depth increases, and that pores are all hydrogen-containing ones through the examination of the variation of number of pores with the residual hydrogen and oxygen content in the weld metal.
基金financial support of Special Scientific Research Project of Public Welfare Industry of Ministry of Land and Resources (Grant No.20121111051)the National Natural Science Foundation of China (Grant No.41272159 and 41572099)+1 种基金supported by Anhui Provincial Natural Science Foundation (Grant No.1908085MD105)China Postdoctoral Science Foundation funded project (Grant No.2019M662200).
文摘The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional resources are becoming increasingly urgent. The Qingshankou Formation consists of typical Upper Cretaceous continental strata, and represents a promising and practical replacement resource for shale oil in the Songliao Basin. Previous studies have shown that low-mature to mature Qingshankou shale mainly preserves type Ⅰ and type Ⅱ1 organic matter, with relatively high total organic carbon(TOC) content. It is estimated that there is a great potential to explore for shale oil resources in the Qingshankou Formation in this basin. However, not enough systematic research has been conducted on pore characteristics and their main controlling factors in this lacustrine shale reservoir. In this study, 19 Qingshankou shales from two wells drilled in the study area were tested and analyzed for mineral composition, pore distribution and feature evolution using Xray diffraction(XRD), scanning electron microscopy(SEM), low-pressure nitrogen gas adsorption(N2-GA), and thermal simulation experiments. The XRD results show that clay, quartz, and feldspar are the dominant mineral constituents of Qingshankou shale. The clay minerals are mostly illite/smectite mixed layers with a mean content of 83.5%, followed by illite, chlorite, and kaolinite. There are abundant deposits of clay-rich shale in the Qingshankou Formation in the study area, within which many mineral and organic matter pores were observed using SEM. Mineral pores contribute the most to shale porosity;specifically, clay mineral pores and carbonate pores comprise most of the mineral pores in the shale. Among the three types of organic matter pores, type B is more dominant the other two. Pores with diameters greater than 10 nm supply the main pore volume;most are half-open slits and wedge-shaped pores. The total pore volume had no obvious linear relationship with TOC content, but had some degree of positive correlation with the content of quartz + feldspar and clay minerals respectively. However, it was negatively correlated with carbonate mineral content. The specific surface area of the pores is negatively related to TOC content, average pore diameter, and carbonate mineral content. Moreover, it had a somewhat positive correlation with clay mineral content and no clear linear relationship with the content of quartz + feldspar. With increases in maturity, there was also an increase in the number of carbonate mineral dissolution pores and organic matter pores, average pore diameter, and pore volume, whereas there was a decrease in specific surface area of the pores. Generally, the Qingshankou shale is at a low-mature to mature stage with a TOC content of more than 1.0%, and could be as thick as 250 m in the study area. Pores with diameters of more than 10 nm are well-developed in the shale. This research illustrates that there are favorable conditions for shale oil occurrence and enrichment in the Qingshankou shale in the study area.
文摘Al-base surface self-lubricating composites need thick and hard alumina membranes with large pores to add lubricants easily. This kind of porous alumina layer was fabricated in additive-containing, phosphoric acid-based solution. The effects of additive containing organic carboxylic acid and Ce salt on the properties of the oxide film and mechanism were investigated in detail with SEM and EDAX analyses. The results show that the pore diameter is about 100 nm, the film thickness increases by 4 -5 times, and the Vickers hardness improves by about 50% through adding some amount of organic carboxylic acid and Ce salt. Such an improvement in properties is explained in terms of a lower film dissolving velocity and better film quality in compound solution.
基金This work was supported by the National Natural Science Foundation of China(Nos.41772141,41972171)the Natural Science Foundation of Jiangsu Province(BK20181362),the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied.In this study,the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin,China.The results show that the characteristics of pore structure will affect the methane adsorption characteristics.The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores.The groove space inside the pore will change the density distribution of methane molecules in the pore,greatly improve the adsorption capacity of the pore,and increase the pressure sensitivity of the adsorption process.Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size,all pores have the strongest methane adsorption capacity when the pore size is about 2 nm.In addition,the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics.The pore adsorption capacity first increases and then decreases with the increase of pressure,and increases with the increase of temperature.In the early stage of thermal evolution,pore adsorption capacity is strong and pressure sensitivity is weak;while in the late stage,it is on the contrary.
基金Financial support for this study by the National Basic Research Program of China (973) (No.2006CB 202300) is gratefully acknowledged
文摘The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried out a comprehensive analy-sis of the vast amount of data from casting thin sections, scanning electron microscope and physical data. Then we analyzed the pore types, pore evolution, distribution and genesis of secondary pores in our study area and discussed the factors controlling the distribution of secondary pores. The results show that pores in the study area are largely composed of intergranular dissolution pores and constituent dissolved pores. Three secondary pore zones were developed in the study area at depths of 2800~3400 m, 3600~4200 m and 4500~4800 m. Secondary pores have been formed mainly because carbonate cement, feldspar, clastic debris and other plastic substances were dissolved by organic acid, released during the evolution of organic matter and acid water formed by CO2. The development and distribution of secondary pores are vertically controlled by the maturity time of source rocks and hori-zontally by the distribution of acid water. As well, this distribution was affected by the sedimentary facies belt and the development of fault zones.
基金by the National Natural Science Foundation of China under Grant No 50671042the Science Foundation of Jiangsu University under Grant No 07JDG032。
文摘The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam(HCPEB)irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1–1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.
基金supported by the National Natural Science Foundation of China(No.21808079,21878330 and 21676298)Key Research and Development Program of Shandong Province(No.2019GSF109115)+2 种基金the National Science and Technology Major Project,the CNPC Key Research Project(2016E-0707)the King Abdullah University of Science and Technology(KAUST) Office of Sponsored Research(OSR) under Award(No.OSR-2019-CPF-4103.2)the Project of National Key R&D Program of China(2019YFC1907700)。
文摘Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS.
基金financially supported by the National Key Research and Development Plan(No.2018YFB0605601)the National Natural Science Foundation of China(No.41972168)。
文摘The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.
基金supported by the National Basic Research Program of China (No.2006CB202200)
文摘Anthracite in Jincheng is a highly metamorphic coal and its system of fissures and pores is differentfrom that of low and medium ranked coal.In order to discover their characteristics,69 samples were collected from 18 CBM wells in Zhengzhuang in Jincheng and their fissures and pores were observed by a Scanning Electron Microscope(SEM).To the naked eyes and by SEM,the pores in the Jincheng anthracite are seen to have abundant mold pores with isolated,shallow and poor connectivity(diameters between 1~50 μm) and few plant tissue pores,gas pores,and solution pores.Most of the fissures are filled with clay minerals or closed;while open fissures are not often visible in the Jincheng coal(aperture between 3~10 μm).These characteristics are determined by the high rank and high vitrinite content of the coal.The existence of too many mold pores and filled fissures does not allow the migration of methane,hence hydraulic fracture stimulation will be required and is an effective method of adding and connecting fissures to enhance CBM production.
基金Supported by the China National Science and Technology Major Project(2017ZX05063002-009)the National Natural Science Foundation of China(41772150)
文摘Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecular model was built. According to mathematical statistics, the validation of the model was solved by converting it into a mathematical formula. It is found by SEM that the pores in clay mineral layers and organic pores occupy most of the pores in shale; the nitrogen adsorption experiment at low temperature reveals that groove pores formed by flaky particles and micro-pores are the main types of pores, and the results of the two are in good agreement. A molecular model was established by illite and graphene molecular structures. Moreover, based on the fractal theory and the Frenkel-Halsey-Hill formula, a modified Frenkel-Halsey-Hill formula was proposed. The reliability of the molecular model was verified to some extent by obtaining parameters such as the fractal dimension, replacement rate and fractal coefficients of correction, and mathematical calculation. This study provides the theoretical basis for quantitative study of shale reservoirs.
基金Supported by the National Natural Science Foundation of China(41690133)National Oil and Gas Science and Technology Major Project(2017ZX05036-002)。
文摘In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study the macerals,organic pores and connectivity of organic pores in the lower Paleozoic organic-rich shale samples from Southern China.Combined with the mechanism of hydrocarbon generation and expulsion and pore forming mechanism of organic matter-based activated carbon,the relationships between organic pore development and the organic matter type,hydrocarbon generation process,diagenesis and pore pressure were explored to reveal the controlling factors of the formation,preservation and connectivity of organic pores in shale.(1)The generation of organic pores goes on through the whole hydrocarbon generation process,and is controlled by the type,maturity and decomposition of organic matter;the different hydrocarbon generation components and differential hydrocarbon-generation evolution of kerogen and solid asphalt lead to different pore development characteristics;organic pores mainly develop in solid bitumen and hydrogen-rich kerogen.(2)The preservation of organic pores is controlled by maturity and diagenesis,including the steric hindrance effect of in-situ hydrocarbon retention,rigid mineral framework formed by recrystallization,the coupling mechanism of pore-fluid pressure and shale brittleness-ductility transition.(3)The Ro of 4.0%is the maturity threshold of organic pore extinction,the shale layers with Ro larger than 3.5%have high risk for shale gas exploration,these shale layers have low gas contents,as they were in an open state before uplift,and had high hydrocarbon expulsion efficiency and strong aromatization,thus having the"congenital deficiency"of high maturity and pore densification.(4)The pores in the same organic matter particle have good connectivity;and the effective connectivity between different organic matter pores and inorganic pores and fractures depends on the abundance and distribution of organic matter,and development degree of pores and fractures in the shale;the accumulation,preservation and laminar distribution of different types of organic matter in high abundance is the prerequisite for the development and connection of organic pores,grain margin fractures and bedding fractures in reservoir.
基金supported by National Science Foundation of China (41802173).
文摘1.Objective Yican 1 well, drilled in Southeastern Ordos Basin by Oil & Gas Survey, China Geological Survey in 2014 produced 3.7×104 m3 natural gas daily, which is the most productive well in the area by far. However, the reservoir quality is poor compared with those of Jingbian gas field in the middle of the Basin, which is mainly caused by the pores filling in karst reservoir.
基金financially supported by the National Natural Science Foundation of China(41972156)the Natural Science Foundation of Heilongjiang Province(TD 2021D001).
文摘Organic matter(OM)hosted pores are crucial for the storage and migration of petroleum in shale reservoirs.Thermal maturity and macerals type are important factors controlling the development of pores therein.In this study,six lacustrine shale samples with different thermal maturities from the first member of the Qingshankou Formation in the Songliao Basin,of which vitrinite reflectance(R_(o))ranging from 0.58% to 1.43%,were selected for a comparative analysis.Scanning electron microscopy(SEM)and reflected light microscopy were combined to investigate the development of organic pores in different macerals during thermal maturation.The results show that alginite and liptodetrinite are the dominant primary macerals,followed by bituminite.Only a few primary organic pores developed in the alginite at the lowest maturity(R_(o)=0.58%).As a result of petroleum generation,oil-prone macerals began to transform to initial-oil solid bitumen at the early oil window(R_(o)=0.73%)and shrinkage cracks were observed.Initial-oil solid bitumen cracked to oil,gas and post-oil bitumen by primary cracking(R_(o)=0.98%).Moreover,solid bitumen(SB)was found to be the dominant OM when R_(o)>0.98%,which indicates that SB is the product of oil-prone macerals transformation.Many secondary bubble pores were observed on SB,which formed by gas release,while devolatilization cracks developed on migrated SB.Additionally,at the late oil window(Ro?1.16%),migrated SB filled the interparticle pore spaces.With further increase in temperature,the liquid oil underwent secondary cracking into pyrobitumen and gas,and spongy pores developed on the pyrobitumen at higher levels of maturity(Ro=1.43%),which formed when pyrobitumen cracked into gas.Vitrinite and inertinite are stable without any visible pores over the range of maturities,verifying their low petroleum generation potential.In addition,it was concluded that clay minerals could have a catalytic effect on the petroleum generation,which may explain why organicclay mixtures had more abundant pores than single OM particles.However,after R_(o)>0.98%,authigenic minerals occupied the organic pore spaces on the organic-clay mixtures,resulting in fewer pores compared to those observed in samples at the early to peak oil window.
基金support of the National Natural Science Foundation of China (Grant Nos. 52174133 and 51809263)China Atomic Energy Authority。
文摘The sealing performance of a bentonite barrier is highly dependent on its seepage characteristics, which are directly related to the characteristics of its pore structure. Based on scanning electron microscopy(SEM) and focused ion beam-SEM(FIB-SEM), the pore structure of bentonite was characterized at different scales. First, a reasonable gray threshold was determined through back analysis, and the image was binarized based on the threshold. In addition, binary images were used to analyze bentonite’s pore structure(porosity and pore size distribution). Furthermore, the effects of different algorithms on the pore structure characterization were evaluated. Then, permeability calculations were performed based on the previous pore structure characteristics and a modified permeability prediction model. For permeability prediction based on the three-dimensional model, the effect of pore tortuosity was also considered. Finally, the accuracy of numerical calculations was verified by conducting macroscopic gas and alcohol permeability experiments. This approach provides a better understanding of the microscale mechanism of gas transport in bentonite and the importance of pore structures at different scales in determining its seepage characteristics.
基金The research work has received funding from the National Natural Science Foundation of China(Grant Nos.11672173,11272195).
文摘To deal with the problems encountered in the large scale numerical simulation of three dimensional(3D)elastic solids with fluid-filled pores,a novel computational model with the corresponding iterative solution procedure is developed,by introducing Eshelby’s idea of eigenstrain and equivalent inclusion into the boundary integral equations(BIE).Moreover,by partitioning all the fluid-filled pores in the computing domain into the near-and the far-field groups according to the distances to the current pore and constructing the local Eshelby matrix over the near-field group,the convergence of iterative procedure is guaranteed so that the problem can be solved effectively and efficiently in the numerical simulation of solids with large numbers of fluid-filled pores.The feasibility and correctness of the proposed computational model are verified in the numerical examples in comparison with the results of the analytical solution in the case of a single spherical fluid-filled pore under uniform pressure in full space and with the results of the subdomain BIE in a number of other cases.The overall mechanical properties of solids are simulated using a representative volume element(RVE)with a single or multiple fluid-filled pores,up to one thousand in number,with the proposed computational model,showing the feasibility and high efficiency of the model.The effect of random distribution of fluid-filled on overall properties is also discussed.Through some examples,it is observed that the effective elastic properties of solids with a large number of fluid-filled pores in random distributions could be studied to some extent by those of solids with regular distributions.
基金funded by National Science and Technology Major Projects(2017ZX05009004,2016ZX05058003)Beijing Natural Science Foundation(2173061)and State Energy Center for Shale Oil Research and Development(G5800-16-ZS-KFNY005).
文摘Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.