To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu allo...To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic.展开更多
[Objective] The aim was to observe the antibacterial effect of nano-scale Titanium dioxide on parasitic bacterium of Nanfeng Citrus in storage period.[Method] Nano-scale Titanium dioxide was prepared by dibutyl phthal...[Objective] The aim was to observe the antibacterial effect of nano-scale Titanium dioxide on parasitic bacterium of Nanfeng Citrus in storage period.[Method] Nano-scale Titanium dioxide was prepared by dibutyl phthalate through sol-gel method under anhydrous conditions,and orthogonal experiment was used to determine optimum conditions for nano-scale Titanium dioxide preparation,and structure characterization of nano-scale Titanium dioxide was carried out by X-Ray diffractometer.Oxford cup method was used to explore inhibition effect of nano-scale Titanium dioxide suspension on the activity of normal parasitic bacterium of Nanfeng Citrus.Simultaneously,the empirical preservation test was carried out.[Result] The average diameter of nano-scale Titanium dioxide powder attained to 14.6 nm,actual average yield could reach 90.83% with RSD(Relative Standard Deviation)of 0.86%.[Conclusion] Nano-scale Titanium dioxide had good antibacterial effect on the parasitic bacterium of Nanfeng Citrus in storage period.展开更多
The magnetization curves of MnFe2O4 nanoparticles and self-formed ferrofluids based on these particles have been measured at room temperature. The median size of the particles is 13.67 nm. The specific saturation magn...The magnetization curves of MnFe2O4 nanoparticles and self-formed ferrofluids based on these particles have been measured at room temperature. The median size of the particles is 13.67 nm. The specific saturation magnetization is less than the theoretical value for the ferrofluids. In the high field range from 5 kOe to 10 kOe, the higher the particle volume fraction is, the steeper the slope of the magnetization curves is when it approaches saturation. The behavior of the saturation magnetization and the law of approach to saturation are due to the presence of self-assembled aggregates of ring-like micelle structures which form in the absence of the magnetic field and field-induced aggregates, respectively. The field-induced aggregates have a dissipative structure, so that at high field, the law of approach to saturation magnetization is different from the one described using Langevin paramagnetism theory. The large particles in the ferrofluids result in apparent hysteresis.展开更多
The present paper covers the unprecedented preparation of stable aqueous Dy-ferrite ferrofluids, whereby colloidal Dy_ δ Fe_ 3- δ O_4 ultrafine particles were dispersed by using polymeric surfactant PMAA. The sta...The present paper covers the unprecedented preparation of stable aqueous Dy-ferrite ferrofluids, whereby colloidal Dy_ δ Fe_ 3- δ O_4 ultrafine particles were dispersed by using polymeric surfactant PMAA. The stabilities of the series of the ferrofluids were studied according to the stability indexes. The susceptibility measurements were made with a Farady-type magnetic balance at various temperatures and magnetic field intensities. In terms of Langevin function, the σ versus H/T curves showed that Dy-ferrite ferrofluids exhibited superparamagnetism behavior and the blocking temperatures were in the range from 160 to 200 K. Moreover, the ferrofluids were characterized by means of Infra-red spectroscopy, transmission electron microscopy, X-ray diffraction, and Mssbauer spectroscopy.展开更多
Based on a lognormal particle size distribution, this paper makes a model analysis on the polydispersity effects on the magnetization behaviour of diluted ferrofluids. Using a modified Langevin relationship for the lo...Based on a lognormal particle size distribution, this paper makes a model analysis on the polydispersity effects on the magnetization behaviour of diluted ferrofluids. Using a modified Langevin relationship for the lognormal dispersion, it first performs reduced calculations without material parameters. From the results, it is extrapolated that for the ferrofluid of lognormal polydispersion, in comparison with the corresponding monodispersion, the saturation magnetization is enhanced higher by the particle size distribution. It also indicates that in an equivalent magnetic field, the lognormally polydispersed ferrofluid is magnetically saturated faster than the corresponding monodispersion. Along the theoretical extrapolations, the polydispersity effects are evaluated for a typical ferrofluid of magnetite, with a dispersity of σ = 0.20. The results indicate that the lognormal polydispersity leads to a slight increase of the saturation magnetization, but a noticeable increase of the speed to reach the saturation value in an equivalent magnetic field.展开更多
There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most ...There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most challenging problems.In this paper,we present a visual object tracking and servoing control system utilizing a tailor-made 38 g nano-scale quadrotor.A lightweight visual module is integrated to enable object tracking capabilities,and a micro positioning deck is mounted to provide accurate pose estimation.In order to be robust against object appearance variations,a novel object tracking algorithm,denoted by RMCTer,is proposed,which integrates a powerful short-term tracking module and an efficient long-term processing module.In particular,the long-term processing module can provide additional object information and modify the short-term tracking model in a timely manner.Furthermore,a positionbased visual servoing control method is proposed for the quadrotor,where an adaptive tracking controller is designed by leveraging backstepping and adaptive techniques.Stable and accurate object tracking is achieved even under disturbances.Experimental results are presented to demonstrate the high accuracy and stability of the whole tracking system.展开更多
Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the at...Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.展开更多
By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensiona...By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China.展开更多
Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther...Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.展开更多
Manganese-substituted magnetite ferrofluids(FFs)Mnx Fe_(1-x)Fe_(2)O_(4)(x=0–0.8)were prepared in this work through a chemical coprecipitation reaction.The controlled growth of FF nanomaterials for antibacterial activ...Manganese-substituted magnetite ferrofluids(FFs)Mnx Fe_(1-x)Fe_(2)O_(4)(x=0–0.8)were prepared in this work through a chemical coprecipitation reaction.The controlled growth of FF nanomaterials for antibacterial activities is challenging,and therefore,very few reports are available on the topic.This research focuses on stabilizing aqueous FFs with the tetramethylammonium hydroxide surfactant to achieve high homogeneity.Morphological characterization reveals nanoparticles of 5–11 nm formed by the chemical reaction and nanocrystalline nature,as evident from structural investigations.Mn-substituted magnetic FFs are analyzed for their structural,functional,and antibacterial performance according to the Mn-substituent content.Optical studies show a high blue shift for Mn^(2+)-substituted Mnx Fe_(1-x)Fe_(2)O_(4)with the theoretical correlation of optical band gaps with the Mn content.The superparamagnetic nature of substituted FFs causes zero coercivity and remanence,which consequently influence the particle size,cation distribution,and spin canting.The structural and functional performance of the FFs is correlated with the antibacterial activity,finally demonstrating the highest inhibition zone formation for Mnx Fe_(1-x)Fe_(2)O_(4)FFs.展开更多
To analyze the thermal convection of ferrofluid along a flat plate is the persistence of this study. The two-dimensional laminar, steady, incompressible flow past a flat plate subject to convective surface boundary co...To analyze the thermal convection of ferrofluid along a flat plate is the persistence of this study. The two-dimensional laminar, steady, incompressible flow past a flat plate subject to convective surface boundary condition, slip velocity in the presence of radiation has been studied where the magnetic field is applied in the transverse direction to the plate. Two different kinds of magnetic nanoparticles, magnetite Fe3O4 and cobalt ferrite CoFe2O4 are amalgamated within the base fluids water and kerosene. The effects of various physical aspects such as magnetic field, volume fraction, radiation and slip conditions on the flow and heat transfer characteristics are presented graphically and discussed. The effect of various dimensionless parameters on the skin friction coefficient and heat transfer rate are also tabulated. To investigate this particular problem, numerical computations are done using the implicit finite difference method based Keller-Box Method.展开更多
Some of the modern electronic and optoelectronic devices exploit ferrofluids contained in narrow gaps between two material plates. When the width of the gap becomes below a micrometer, the boundary plates are subjecte...Some of the modern electronic and optoelectronic devices exploit ferrofluids contained in narrow gaps between two material plates. When the width of the gap becomes below a micrometer, the boundary plates are subjected to the Casimir force arising from the zero-point and thermal fluctuations of the electromagnetic field. These forces should be taken into account in microdevices with the dimensions decreased to below a micrometer. In this paper, we review recently performed calculations of the attractive Casimir pressure in three-layer systems containing a ferrofluid. We also find the ferrofluidic system where the Casimir pressure is repulsive. This result is obtained in the framework of the fundamental Lifshitz theory of van der Waals and Casimir forces. The conclusion is made that enhanced repulsion due to the presence of a ferrofluid may prevent from sticking of closely spaced elements of a microdevice.展开更多
The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is...The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interracial friction behavior between two kinds of materials was presented based on the Newton' s equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.展开更多
Synthesis of functional iron oxide nanoparticles, well dispersed in aqueous fluids still remains a challenge as its stability requires a delicate balance between electrostatic and magnetic interactions. Templated synt...Synthesis of functional iron oxide nanoparticles, well dispersed in aqueous fluids still remains a challenge as its stability requires a delicate balance between electrostatic and magnetic interactions. Templated synthesis using biomolecules is useful because the biomolecules have their unique arrangement in aqueous systems that enhance stability, commonly called “biomimetic synthesis”. We have developed a one-pot in-situ, low energy process for the synthesis of highly monodispersed, Collagen Functionalized Ferrofluids (CFF) as a templating agent in an aqueous medium. The nanoparticles so obtained were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR). The antibacterial activity in terms of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and growth inhibition has been assessed against gram positive, Staphylococcus aureus, ATCC 13709 (native strain) and in Escherichia coli, DH5α gram negative bacteria. The cytotoxicity of the CFFs on cancer cell lines human embryonic kidney (HEK), breast adenocarcinoma (MCF-7) and Ehrlich ascitic carcinoma (EAC) have also been investigated. CFFs indicated variable MIC and MBC values against S. aureus and E. coli being minimum for 1.5% CFF (MIC:23.43 μg/ml and 93.75 μg/ml and MBC: 46.87 μg/ml and 187.5 μg/ml). The observed cytotoxicity in mammalian cells indicated the susceptibility of MCF-7 breast cancer cells when compared to HEK cells.展开更多
With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge...With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge-oxygen model is used to construct the interface of different sizes, and the finite size effect of the interface between fine electronic structure silicon and silicon dioxide is studied. Then, the influence of the finite size effect on the electrical properties of nanotransistors is calculated by using the first principle. Theoretical calculation results demonstrate that the bond length of Si-Si and Si-O shows a saturate tendency when the size increases, while the absorption capacity of visible light and the barrier of the interface increase with the decrease of size. Finally, the results of two tunneling current models show that the finite size effect of Si(001)/SiO 2 interface can lead to a larger change in the gate leakage current of nano-scale devices, and the transition region and image potential, which play an important role in the calculation of interface characteristics of large-scale devices, show different sensitivities to the finite size effect. Therefore, the finite size effect of the interface on the gate leakage current cannot be ignored in nano-scale devices.展开更多
A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two te...A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two templates respectively are optically projected onto a photodetector array, then the detected Moiré signals are used to estimate the alignment errors in x and y directions. The experiment result indicates that complex differential Moiré signal is sensitive to relative displacement of the pair of marks than each single Moiré signal, and the alignment resolutions obtained in x and y directions are ±20nm(3σ) and ±24nm(3σ). They can meet the requirement of alignment accuracy for submicron imprint lithography.展开更多
Magnetic fluids,also known as ferrofluids,are versatile functional materials with a wide range of applications.These applications span from industrial uses such as vacuum seals,actuators,and acoustic devices to medica...Magnetic fluids,also known as ferrofluids,are versatile functional materials with a wide range of applications.These applications span from industrial uses such as vacuum seals,actuators,and acoustic devices to medical uses,including serving as contrast agents for magnetic resonance imaging(MRI),delivering medications to specific locations within the body,and magnetic hyperthermia for cancer treatment.The use of a non-wettable immiscible liquid substrate to support a layer of magnetic fluid opens up new possibilities for studying various fluid flows and related instabilities in multi-phase systems with both a free surface and an interface.The presence of two deformable boundaries within a ferrofluid layer significantly reduces the critical magnetic field strength required to transform the layer into an organized system of drops or polygonal figures evolving according to the intensity,frequency and direction of the considered magnetic field.This paper experimentally investigates this problem by assuming a uniform magnetic field perpendicular to the surface.This specific subject has not been previously explored experimentally.The critical magnetic field intensity required to destabilize the ferrofluid layer is determined based on the layer’s thickness and the fluid’s initial magnetic susceptibility.It is demonstrated that the critical magnetic field strength needed to disrupt the initially continuous ferrofluid layer increases with the layer’s thickness.Conversely,an increase in the ferrofluid’s magnetic susceptibility results in a decrease in the critical magnetic field strength.The emerging droplet structures are analyzed in terms of the number of drops,their size,and the periodicity of their arrangement.The number of droplets formed depends on the initial thickness of the layer,the presence or absence of a stable rupture in the upper layer,and the rate at which the magnetic field strength is increased to the critical value.A characteristic viscous time is proposed to evaluate the decomposition of the ferrofluid layer,which depends on the duration of the magnetic field’s application.The experimental data on the instability of a ferrofluid layer on a liquid substrate are compared with the theoretical results from the study of“magnetic fluid sandwich structures”conducted by Rannacher and Engel.This comparison highlights the similarities and differences between experimental observations and theoretical predictions,providing a deeper understanding of the behavior of ferrofluid layers under the influence of magnetic fields.展开更多
The regular distribution of micro-droplets splitting from thin ferrofluid layer is systematic experimentally investigated, as the layer is placed in a vertical magnetic field. In this work, the field is applied in an ...The regular distribution of micro-droplets splitting from thin ferrofluid layer is systematic experimentally investigated, as the layer is placed in a vertical magnetic field. In this work, the field is applied in an instant manner and a slow manner, respectively; the field strength is linear increased. With instantly raising the field, it is observed that the ferrofluid layer is split into several regularly distributed micro-droplets, and that the number of micro-droplets is linear to the magnetic field strength and the thickness of the liquid layers. When the field is slowly increased, a liquid ring together with several micro-droplets appears from the ferrofluid layer splitting. A spatial drift of the micro-droplets is also observed in the process of increasing the magnetic field. Our results are useful for manipulating the splitting regularities of ferrofluid layers by magnetic field, which may be used in non-contact segmentation, and magnetically manipulated drug carriers for targeting the therapy, etc.展开更多
Ferrofluid containing highly conductive polyaniline (PANI) was prepared, in which soluble PANI solutions dopedwith 10-camphorsulfonic acid (CSA) and dodecyl benzenesulfonic acid (DBSA) were used as the basic solution ...Ferrofluid containing highly conductive polyaniline (PANI) was prepared, in which soluble PANI solutions dopedwith 10-camphorsulfonic acid (CSA) and dodecyl benzenesulfonic acid (DBSA) were used as the basic solution and Fe_3O_4nanoparticles (d = 10 nm) as the magnetic material. Moreover, the freestanding films of the resulting ferrofluid can beobtained by an evaporation method. The electrical and magnetic properties of the ferrofluid or its films can be adjustedthrough changing the content of PANI and Fe_3O_4. High saturated magnetization (≈ 30 emu/g) and high conductivity(≈ 250 S/cm) of the composite films can be achieved when the composite film contains 26.6 wt% of Fe_3O_4. In particular, itwas found that the composite films exhibit a super-paramagnetic behavior (Hc = 0) attributed to the size of Fe_3O_4 particles on the nanometer scale.展开更多
This study is to numerically test the interfacial instability of ferrofluid flow under the presence of a vacuum magnetic field.The ferrofluid parabolized stability equations(PSEs)are derived from the ferrofluid stabil...This study is to numerically test the interfacial instability of ferrofluid flow under the presence of a vacuum magnetic field.The ferrofluid parabolized stability equations(PSEs)are derived from the ferrofluid stability equations and the Rosensweig equations,and the characteristic values of the ferrofluid PSEs are given to describe the ellipticity of ferrofluid flow.Three numerical models representing specific cases considering with/without a vacuum magnetic field or viscosity are created to mathematically examine the interfacial instability by the computation of characteristic values.Numerical investigation shows strong dependence of the basic characteristic of ferrofluid Rayleigh-Taylor instability(RTI)on viscosity of ferrofluid and independence of the vacuum magnetic field.For the shock wave striking helium bubble,the magnetic field is not able to trigger the symmetry breaking of bubble but change the speed of the bubble movement.In the process of droplet formation from a submerged orifice,the collision between the droplet and the liquid surface causes symmetry breaking.Both the viscosity and the magnetic field exacerbate symmetry breaking.The computational results agree with the published experimental results.展开更多
基金Funded by the National Natural Science Foundation of China(No.51905215)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_1233)+1 种基金Major Scientific and Technological Innovation Project of Shandong Province of China(No.2019JZZY020111)the National College Students Innovation and Entrepreneurship Training Program of China(No.CX2022415)。
文摘To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic.
文摘[Objective] The aim was to observe the antibacterial effect of nano-scale Titanium dioxide on parasitic bacterium of Nanfeng Citrus in storage period.[Method] Nano-scale Titanium dioxide was prepared by dibutyl phthalate through sol-gel method under anhydrous conditions,and orthogonal experiment was used to determine optimum conditions for nano-scale Titanium dioxide preparation,and structure characterization of nano-scale Titanium dioxide was carried out by X-Ray diffractometer.Oxford cup method was used to explore inhibition effect of nano-scale Titanium dioxide suspension on the activity of normal parasitic bacterium of Nanfeng Citrus.Simultaneously,the empirical preservation test was carried out.[Result] The average diameter of nano-scale Titanium dioxide powder attained to 14.6 nm,actual average yield could reach 90.83% with RSD(Relative Standard Deviation)of 0.86%.[Conclusion] Nano-scale Titanium dioxide had good antibacterial effect on the parasitic bacterium of Nanfeng Citrus in storage period.
文摘The magnetization curves of MnFe2O4 nanoparticles and self-formed ferrofluids based on these particles have been measured at room temperature. The median size of the particles is 13.67 nm. The specific saturation magnetization is less than the theoretical value for the ferrofluids. In the high field range from 5 kOe to 10 kOe, the higher the particle volume fraction is, the steeper the slope of the magnetization curves is when it approaches saturation. The behavior of the saturation magnetization and the law of approach to saturation are due to the presence of self-assembled aggregates of ring-like micelle structures which form in the absence of the magnetic field and field-induced aggregates, respectively. The field-induced aggregates have a dissipative structure, so that at high field, the law of approach to saturation magnetization is different from the one described using Langevin paramagnetism theory. The large particles in the ferrofluids result in apparent hysteresis.
基金Supported by the National Natural Science Foundation of China(No.2 97730 14)
文摘The present paper covers the unprecedented preparation of stable aqueous Dy-ferrite ferrofluids, whereby colloidal Dy_ δ Fe_ 3- δ O_4 ultrafine particles were dispersed by using polymeric surfactant PMAA. The stabilities of the series of the ferrofluids were studied according to the stability indexes. The susceptibility measurements were made with a Farady-type magnetic balance at various temperatures and magnetic field intensities. In terms of Langevin function, the σ versus H/T curves showed that Dy-ferrite ferrofluids exhibited superparamagnetism behavior and the blocking temperatures were in the range from 160 to 200 K. Moreover, the ferrofluids were characterized by means of Infra-red spectroscopy, transmission electron microscopy, X-ray diffraction, and Mssbauer spectroscopy.
基金Project supported by the Shanghai Leading Academic Discipline Project of China (Grant No. B107)
文摘Based on a lognormal particle size distribution, this paper makes a model analysis on the polydispersity effects on the magnetization behaviour of diluted ferrofluids. Using a modified Langevin relationship for the lognormal dispersion, it first performs reduced calculations without material parameters. From the results, it is extrapolated that for the ferrofluid of lognormal polydispersion, in comparison with the corresponding monodispersion, the saturation magnetization is enhanced higher by the particle size distribution. It also indicates that in an equivalent magnetic field, the lognormally polydispersed ferrofluid is magnetically saturated faster than the corresponding monodispersion. Along the theoretical extrapolations, the polydispersity effects are evaluated for a typical ferrofluid of magnetite, with a dispersity of σ = 0.20. The results indicate that the lognormal polydispersity leads to a slight increase of the saturation magnetization, but a noticeable increase of the speed to reach the saturation value in an equivalent magnetic field.
基金supported in part by the Institute for Guo Qiang of Tsinghua University(2019GQG1023)in part by Graduate Education and Teaching Reform Project of Tsinghua University(202007J007)+1 种基金in part by National Natural Science Foundation of China(U19B2029,62073028,61803222)in part by the Independent Research Program of Tsinghua University(2018Z05JDX002)。
文摘There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most challenging problems.In this paper,we present a visual object tracking and servoing control system utilizing a tailor-made 38 g nano-scale quadrotor.A lightweight visual module is integrated to enable object tracking capabilities,and a micro positioning deck is mounted to provide accurate pose estimation.In order to be robust against object appearance variations,a novel object tracking algorithm,denoted by RMCTer,is proposed,which integrates a powerful short-term tracking module and an efficient long-term processing module.In particular,the long-term processing module can provide additional object information and modify the short-term tracking model in a timely manner.Furthermore,a positionbased visual servoing control method is proposed for the quadrotor,where an adaptive tracking controller is designed by leveraging backstepping and adaptive techniques.Stable and accurate object tracking is achieved even under disturbances.Experimental results are presented to demonstrate the high accuracy and stability of the whole tracking system.
文摘Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.
基金Supported by the Central Guiding Local Science and Technology Development Special Project(ZY20B13)。
文摘By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China.
基金supported by National Natural Science Foundation of China (Grant No. 50875169)National Basic Research Program of China (973 Program, Grant No. 2007CB936004).
文摘Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.
基金the financial assistance provided by the Indian Council of Medical Research in the form of a research associate (No.5/3/8/95/ITR F/2020)。
文摘Manganese-substituted magnetite ferrofluids(FFs)Mnx Fe_(1-x)Fe_(2)O_(4)(x=0–0.8)were prepared in this work through a chemical coprecipitation reaction.The controlled growth of FF nanomaterials for antibacterial activities is challenging,and therefore,very few reports are available on the topic.This research focuses on stabilizing aqueous FFs with the tetramethylammonium hydroxide surfactant to achieve high homogeneity.Morphological characterization reveals nanoparticles of 5–11 nm formed by the chemical reaction and nanocrystalline nature,as evident from structural investigations.Mn-substituted magnetic FFs are analyzed for their structural,functional,and antibacterial performance according to the Mn-substituent content.Optical studies show a high blue shift for Mn^(2+)-substituted Mnx Fe_(1-x)Fe_(2)O_(4)with the theoretical correlation of optical band gaps with the Mn content.The superparamagnetic nature of substituted FFs causes zero coercivity and remanence,which consequently influence the particle size,cation distribution,and spin canting.The structural and functional performance of the FFs is correlated with the antibacterial activity,finally demonstrating the highest inhibition zone formation for Mnx Fe_(1-x)Fe_(2)O_(4)FFs.
文摘To analyze the thermal convection of ferrofluid along a flat plate is the persistence of this study. The two-dimensional laminar, steady, incompressible flow past a flat plate subject to convective surface boundary condition, slip velocity in the presence of radiation has been studied where the magnetic field is applied in the transverse direction to the plate. Two different kinds of magnetic nanoparticles, magnetite Fe3O4 and cobalt ferrite CoFe2O4 are amalgamated within the base fluids water and kerosene. The effects of various physical aspects such as magnetic field, volume fraction, radiation and slip conditions on the flow and heat transfer characteristics are presented graphically and discussed. The effect of various dimensionless parameters on the skin friction coefficient and heat transfer rate are also tabulated. To investigate this particular problem, numerical computations are done using the implicit finite difference method based Keller-Box Method.
文摘Some of the modern electronic and optoelectronic devices exploit ferrofluids contained in narrow gaps between two material plates. When the width of the gap becomes below a micrometer, the boundary plates are subjected to the Casimir force arising from the zero-point and thermal fluctuations of the electromagnetic field. These forces should be taken into account in microdevices with the dimensions decreased to below a micrometer. In this paper, we review recently performed calculations of the attractive Casimir pressure in three-layer systems containing a ferrofluid. We also find the ferrofluidic system where the Casimir pressure is repulsive. This result is obtained in the framework of the fundamental Lifshitz theory of van der Waals and Casimir forces. The conclusion is made that enhanced repulsion due to the presence of a ferrofluid may prevent from sticking of closely spaced elements of a microdevice.
基金Funded by Natural Science Foundation of Guangxi Province ofChina (No.0339037) ,the Support Programfor Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institution,the Science Foundationfor Qualified Personnel of Jiangsu University(04JDG027) ,andthe Innovative Science Foundation of Jiangsu Uni-versity
文摘The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interracial friction behavior between two kinds of materials was presented based on the Newton' s equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.
文摘Synthesis of functional iron oxide nanoparticles, well dispersed in aqueous fluids still remains a challenge as its stability requires a delicate balance between electrostatic and magnetic interactions. Templated synthesis using biomolecules is useful because the biomolecules have their unique arrangement in aqueous systems that enhance stability, commonly called “biomimetic synthesis”. We have developed a one-pot in-situ, low energy process for the synthesis of highly monodispersed, Collagen Functionalized Ferrofluids (CFF) as a templating agent in an aqueous medium. The nanoparticles so obtained were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR). The antibacterial activity in terms of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and growth inhibition has been assessed against gram positive, Staphylococcus aureus, ATCC 13709 (native strain) and in Escherichia coli, DH5α gram negative bacteria. The cytotoxicity of the CFFs on cancer cell lines human embryonic kidney (HEK), breast adenocarcinoma (MCF-7) and Ehrlich ascitic carcinoma (EAC) have also been investigated. CFFs indicated variable MIC and MBC values against S. aureus and E. coli being minimum for 1.5% CFF (MIC:23.43 μg/ml and 93.75 μg/ml and MBC: 46.87 μg/ml and 187.5 μg/ml). The observed cytotoxicity in mammalian cells indicated the susceptibility of MCF-7 breast cancer cells when compared to HEK cells.
基金The National Natural Science Foundation of China(No.61774014)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYZZ15_0331)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB510060)
文摘With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge-oxygen model is used to construct the interface of different sizes, and the finite size effect of the interface between fine electronic structure silicon and silicon dioxide is studied. Then, the influence of the finite size effect on the electrical properties of nanotransistors is calculated by using the first principle. Theoretical calculation results demonstrate that the bond length of Si-Si and Si-O shows a saturate tendency when the size increases, while the absorption capacity of visible light and the barrier of the interface increase with the decrease of size. Finally, the results of two tunneling current models show that the finite size effect of Si(001)/SiO 2 interface can lead to a larger change in the gate leakage current of nano-scale devices, and the transition region and image potential, which play an important role in the calculation of interface characteristics of large-scale devices, show different sensitivities to the finite size effect. Therefore, the finite size effect of the interface on the gate leakage current cannot be ignored in nano-scale devices.
文摘A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two templates respectively are optically projected onto a photodetector array, then the detected Moiré signals are used to estimate the alignment errors in x and y directions. The experiment result indicates that complex differential Moiré signal is sensitive to relative displacement of the pair of marks than each single Moiré signal, and the alignment resolutions obtained in x and y directions are ±20nm(3σ) and ±24nm(3σ). They can meet the requirement of alignment accuracy for submicron imprint lithography.
基金the framework of the State Program AAAA-A20-120020690030-5.
文摘Magnetic fluids,also known as ferrofluids,are versatile functional materials with a wide range of applications.These applications span from industrial uses such as vacuum seals,actuators,and acoustic devices to medical uses,including serving as contrast agents for magnetic resonance imaging(MRI),delivering medications to specific locations within the body,and magnetic hyperthermia for cancer treatment.The use of a non-wettable immiscible liquid substrate to support a layer of magnetic fluid opens up new possibilities for studying various fluid flows and related instabilities in multi-phase systems with both a free surface and an interface.The presence of two deformable boundaries within a ferrofluid layer significantly reduces the critical magnetic field strength required to transform the layer into an organized system of drops or polygonal figures evolving according to the intensity,frequency and direction of the considered magnetic field.This paper experimentally investigates this problem by assuming a uniform magnetic field perpendicular to the surface.This specific subject has not been previously explored experimentally.The critical magnetic field intensity required to destabilize the ferrofluid layer is determined based on the layer’s thickness and the fluid’s initial magnetic susceptibility.It is demonstrated that the critical magnetic field strength needed to disrupt the initially continuous ferrofluid layer increases with the layer’s thickness.Conversely,an increase in the ferrofluid’s magnetic susceptibility results in a decrease in the critical magnetic field strength.The emerging droplet structures are analyzed in terms of the number of drops,their size,and the periodicity of their arrangement.The number of droplets formed depends on the initial thickness of the layer,the presence or absence of a stable rupture in the upper layer,and the rate at which the magnetic field strength is increased to the critical value.A characteristic viscous time is proposed to evaluate the decomposition of the ferrofluid layer,which depends on the duration of the magnetic field’s application.The experimental data on the instability of a ferrofluid layer on a liquid substrate are compared with the theoretical results from the study of“magnetic fluid sandwich structures”conducted by Rannacher and Engel.This comparison highlights the similarities and differences between experimental observations and theoretical predictions,providing a deeper understanding of the behavior of ferrofluid layers under the influence of magnetic fields.
基金Funded by the National Natural Science Foundation of China(No.51077006)
文摘The regular distribution of micro-droplets splitting from thin ferrofluid layer is systematic experimentally investigated, as the layer is placed in a vertical magnetic field. In this work, the field is applied in an instant manner and a slow manner, respectively; the field strength is linear increased. With instantly raising the field, it is observed that the ferrofluid layer is split into several regularly distributed micro-droplets, and that the number of micro-droplets is linear to the magnetic field strength and the thickness of the liquid layers. When the field is slowly increased, a liquid ring together with several micro-droplets appears from the ferrofluid layer splitting. A spatial drift of the micro-droplets is also observed in the process of increasing the magnetic field. Our results are useful for manipulating the splitting regularities of ferrofluid layers by magnetic field, which may be used in non-contact segmentation, and magnetically manipulated drug carriers for targeting the therapy, etc.
基金This project was supported by 973 Program of China.
文摘Ferrofluid containing highly conductive polyaniline (PANI) was prepared, in which soluble PANI solutions dopedwith 10-camphorsulfonic acid (CSA) and dodecyl benzenesulfonic acid (DBSA) were used as the basic solution and Fe_3O_4nanoparticles (d = 10 nm) as the magnetic material. Moreover, the freestanding films of the resulting ferrofluid can beobtained by an evaporation method. The electrical and magnetic properties of the ferrofluid or its films can be adjustedthrough changing the content of PANI and Fe_3O_4. High saturated magnetization (≈ 30 emu/g) and high conductivity(≈ 250 S/cm) of the composite films can be achieved when the composite film contains 26.6 wt% of Fe_3O_4. In particular, itwas found that the composite films exhibit a super-paramagnetic behavior (Hc = 0) attributed to the size of Fe_3O_4 particles on the nanometer scale.
基金the National Natural Science Foundation of China(No.11971411)the Research Foundation of Education Bureau of Hunan Province of China(No.18A067)。
文摘This study is to numerically test the interfacial instability of ferrofluid flow under the presence of a vacuum magnetic field.The ferrofluid parabolized stability equations(PSEs)are derived from the ferrofluid stability equations and the Rosensweig equations,and the characteristic values of the ferrofluid PSEs are given to describe the ellipticity of ferrofluid flow.Three numerical models representing specific cases considering with/without a vacuum magnetic field or viscosity are created to mathematically examine the interfacial instability by the computation of characteristic values.Numerical investigation shows strong dependence of the basic characteristic of ferrofluid Rayleigh-Taylor instability(RTI)on viscosity of ferrofluid and independence of the vacuum magnetic field.For the shock wave striking helium bubble,the magnetic field is not able to trigger the symmetry breaking of bubble but change the speed of the bubble movement.In the process of droplet formation from a submerged orifice,the collision between the droplet and the liquid surface causes symmetry breaking.Both the viscosity and the magnetic field exacerbate symmetry breaking.The computational results agree with the published experimental results.