Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule te...Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule technology of phase change materials and its main functions and the structural composition, preparation methods and characterization technology of microcapsule of phase change materials. The microcapsule of phase change materials is small in size and its temperature remains unchanged during the process of heat absorption and heat release. It is of great value in research and application prospect due to these characteristics.展开更多
Phase change microcapsules can carry large amounts of heat and be dispersed into other mediums either as a solid composite or as slurry fluids without changes to their appearance or fluidity. These two standout featur...Phase change microcapsules can carry large amounts of heat and be dispersed into other mediums either as a solid composite or as slurry fluids without changes to their appearance or fluidity. These two standout features make phase change microcapsules ideal for use in thermal energy applications to enhance the efficiency of energy utilisation. This review paper includes methods used for the encapsulation of phase change materials, especially the method suitable for large scale productions, the trends of phase change microcapsule development and their use in thermal energy applications in static and dynamic conditions. The effect of phase change microcapsules on convective heat transfer through addition to thermal fluids as slurries is critically reviewed. The review highlighted that so far the phase change microcapsules used mainly have polymeric shells, which has very low thermal conductivities. Their enhancement in convective heat transfer was demonstrated in locations where the phase change material experiences phase change. The phase change results in the slurries having higher apparent local specific heat capacities and thus higher local heat transfer coefficients. Out of the phase change region, no enhancement is observed from the solid microcapsule particles due to the low specific heat capacity and thermal conductivity of the phase change microcapsules compared to that of water, which is normally used as slurry media in the test. To further the research in this area, phase change microcapsules with higher specific heat capacity, higher thermal conductivity and better shape stability need to be applied.展开更多
Phase change microcapsules(PCMs)are prepared with n-hexadecane and n-octadecane as core material,and melamine-formaldehyde resin is used as shell material by in-situ polymerization.Differential scanning calorimetry(DS...Phase change microcapsules(PCMs)are prepared with n-hexadecane and n-octadecane as core material,and melamine-formaldehyde resin is used as shell material by in-situ polymerization.Differential scanning calorimetry(DSC)was used to analyze the phase change properties.Thermal conductivity and maximum heat flux of cotton fabric finished with PCMs before and after being washed were also measured.It has been found that melting and crystal enthalpy of the PCMs decrease with decreasing the core/shell ratio,while qmax of fabric treated with PCMs decreases and the thermal conductivity increases.Study shows that fabric finished by the PCMs has good temperature conditioning function.展开更多
Cold chain transportation is currently a hot research topic.Since the traditional refrigeration methods lead to the consumption of large amounts of energy,the search for new energy storage materials is a major trend.I...Cold chain transportation is currently a hot research topic.Since the traditional refrigeration methods lead to the consumption of large amounts of energy,the search for new energy storage materials is a major trend.In the present contribution,n-dodecane/PMMA microencapsulated phase change materials were prepared by suspension polymerization for ice-temperature cold chain transportation and their preparation parameters were explored using the encapsulation ratio as optimization indicator.The results show that the n-dodecane-containing microcapsules have a maximum encapsulation ratio of 93.2%when using a core-to-wall ratio of 3:1,5%of emulsifier,30%of crosslinker,and 2000 rpm of emulsification speed.The phase transition temperature and enthalpy are-2℃and 195.9 kJ/kg,respectively.The microcapsules prepared with the optimized process parameters have good microscopic morphology,high energy storage efficiency,uniform particle size and good thermal stability,making them ideal materials for cold chain transportation.展开更多
The design and synthesis of novel photocatalyst with self-temperature control function is an important topic in the field of advanced environmental functional materials.In this work,submicron-sized magnetic phase chan...The design and synthesis of novel photocatalyst with self-temperature control function is an important topic in the field of advanced environmental functional materials.In this work,submicron-sized magnetic phase change microcapsules composed of paraffin core and Fe_(3)O_(4)-loaded silica shell are prepared,on which the Bi_(2)WO_(6)crystals is grown in situ through hydrothermal reaction to obtain novel magnetic phase-change-microcapsule-supported Bi_(2)WO_(6)catalyst(MP@FS/BWO).The MP@FS/BWO has a paraffin encapsulation ratio of 57.1%,and the phase change enthalpy of 105.1 J/g in a temperature range of 50–60℃,which endows the MP@FS/BWO with a certain self-temperature regulation ability.MP@FS/BWO shows excellent catalytic performance in the decomposition of rhodamine B under the simulated sunlight irradiation.After the light source is turned off,it still has good catalytic ability by maintaining high temperature due to its temperature control function based on the phase transition process.The MP@FS/BWO can be easily recycled by magnetic separation and shows good structural stability and reusability.This work provides a new idea for the development of long-effect and energy-saving outdoor photocatalysts.展开更多
Phase change materials(PCMs)have attracted significant attention in thermal management due to their ability to store and release large amounts of heat during phase transitions.However,their widespread application is r...Phase change materials(PCMs)have attracted significant attention in thermal management due to their ability to store and release large amounts of heat during phase transitions.However,their widespread application is restricted by leakage issues.Encapsulating PCMs within polymeric microcapsules is a promising strategy to prevent leakage and increase heat transfer area with matrices.Moreover,photothermal PCM microcapsules are particularly desirable for solar energy storage.Herein,we fabricated photothermal PCM microcapsules with melamine-formaldehyde resin(MF)as shell using cellulose nanocrystal(CNC)and graphene oxide(GO)co-stabilized Pickering emulsion droplets as templates.CNC displays outstanding Pickering emulsifying ability and can facilitate the fixation of GO at the oil-water interface,resulting in a stable CNC/GO co-stabilized PCM Pickering emulsion.A polydopamine(PDA)layer was coated in-situ on the emulsion droplets via oxidization self-polymerization of dopamine.Meanwhile,GO was reduced to reduced GO(rGO)due to the reducing ability of PDA.The outmost MF shell of the PCM microcapsules was formed in-situ through the polymerization and crosslinking of MF prepolymer.The resulted PCM@CNC/rGO/PDA/MF microcapsules exhibit uniform sizes in the micrometer range,excellent leakage-proof performance,high phase change enthalpy(175.4 J g^(−1))and PCM encapsulation content(84.2%).Moreover,the presence of rGO and PDA endows PCM@CNC/rGO/PDA/MF microcapsules with outstanding photothermal conversion performance.The temperature of PCM@CNC/rGO/PDA/MF microcapsule slurries(15wt.%)can reach 73°C after light irradiation at 1 W cm^(−2).Therefore,photothermal PCM@CNC/rGO/PDA/MF microcapsules are promising for solar energy harvesting,thermal energy storage,and release in various applications,such as energy-efficient buildings and smart textiles.展开更多
This paper gives a brief report of the preparation of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials(HMPM).The sealing performance and thermal stability of HMPM was enhanced much mor...This paper gives a brief report of the preparation of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials(HMPM).The sealing performance and thermal stability of HMPM was enhanced much more effectively than that of microcapsule with polyurea shell material(HPM).The results of microscopical imaging analysis system,DSC,TG,and laser particle analyzer were briefly introduced.展开更多
A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization me...A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization method followed by silver reduction.Fourier-transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy with energy dispersive X-ray spectrometry(SEM/EDS),thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC)were used to characterize the chemical structure,morphology and thermal properties of the as-prepared silver-coated microPCMs.FTIR analysis confirmed the successful encapsulation of TD with MUF wall materials.The SEM and EDS results indicated that the prepared silver-coated MUF microPCMs exhibited uniform spherical shape with a perfect silver outer layer.From XRD analysis,the Ag metal dispersed on the surface of microcapsules presented the form of elementary substance.The deposition weight of silver particles on the microcapsule surface increased with increasing the amount of silver nitrate,as indicated by EDS tests.The DSC results indicated that the melting temperature and the melting latent heat of microPCMs modified with 0.7g of silver nitrate in 150mL aqueous solution were 39.2°C and 126.6J·g^-1,respectively.Supercooling of the microPCMs coated with silver particles was effectively suppressed,compared with that of microPCMs without Ag.Thus,the encapsulation of TD with silver-coated MUF shell developed by this work can be an effective method to prepare the microPCMs with enhanced thermal transfer performance and phase change properties.展开更多
It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experimen...It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experiment, toluene diisocyanate, diphenyl methane diisocyanate and hexamethylenediisocyanate were used to form the polyurethane shell and the effects of them on the heat storage density and the microencapsulation efficiency were investigated. Furthermore, the effect of supercooling prevention agent on the phase change behavior of erythritol was investigated. The microcapsules prepared with toluendiisocyanate monomer showed the highest heat storage density and the higher microencapsulation efficiency. Considerable supercooling phenomenon in the microcapsule was observed and prevented to a certain degree by addition of potassium dihydrogen phosphate and calcium sulfate as the supercooling prevention agent.展开更多
Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of inf...Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology.展开更多
For thermal energy storage application in energy-saving building materials,silica microcapsules containing phase change material were prepared using sol-gel method in O/W emulsion system. In the system droplets in mic...For thermal energy storage application in energy-saving building materials,silica microcapsules containing phase change material were prepared using sol-gel method in O/W emulsion system. In the system droplets in microns are formed by emulsifying an organic phase consisting of butyl-stearate as core material. The silica shell was formed via hydrolysis and condensation from tetraethyl silicate with acetate as catalyst. The SEM photographs show the particles possess spherical morphology and core-shell structure. The as-prepared silica microcapsules mainly consist of microsphere in the diameter of 3-7 μm and the median diameter of these microcapsules equals to 5.2 μm. The differential scanning calorimetry(DSC) curves indicate that the latent heat and the melting point of microcapsules are 86 J/g and 22.6 ℃,respectively. The results of DSC and TG further testify the microcapsules with core-shell structure.展开更多
We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. Th...We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. The phase change microcapsules(microPCMs) were prepared by an in situ polymerization using sodium dodecyl sulfate(SDS) and polyvinyl alcohol(PVA) as emulsifiers. Surface morphology, particle size, chemical structure, and thermal properties of microPCMs were, respectively, characterized by using scanning electron microscopy(SEM), field emission scanning electron microscopy(FESEM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), and thermal gravimetric analysis(TGA). Low-temperature resistance performances were measured at-15,-30,-45, and-60 ℃ after microPCMs were coated on a cotton fabric by foaming technology. The results showed that spherical microPCMs had 4.4 μm diameter and 100 nm wall thickness. The melting and freezing temperatures and the latent heats of the microPCMs were determined as 28.9 and 29.6 ℃ as well as 110.0 and 115.7 J/g, respectively. Encapsulation of n-alkane mixture achieved 84.9 %. TGA analysis indicated that the microPCMs had good chemical stability below 250 ℃. The results showed that the microencapsulated n-alkane mixture had good energy storage potential. After the addition of 10 % microPCMs, low-temperature resistance duration was prolonged by 126.9%, 145.5%, 128.6%, and 87.5% in environment of-15,-30,-45 and-60 ℃, respectively as compared to pure fabric. Based on the results, phase change microcapsule plays an effective role in lowtemperature protection field for the human body.展开更多
The 3ω approach was used to measure the effective thermal conductivity of phase-change material microcapsules (PCMMs) based on urea formaldehyde and sliced paraffin. The effective thermal conductivities of PCMMs with...The 3ω approach was used to measure the effective thermal conductivity of phase-change material microcapsules (PCMMs) based on urea formaldehyde and sliced paraffin. The effective thermal conductivities of PCMMs with different densities were measured within the phase-change temperature range. The relationships between effective thermal conductivity, density and temperature were analysed. The effective thermal conductivity reached peak values within the phase-change temperature range and the temperature peak value was consistent with the peak value of the phase-change temperature. The effective thermal conductivity increased with increasing density due to the decreased porosity of samples and their increased solid-phase conduction.展开更多
Magnetic microcapsules containing paraffin cores within urea-formaldehyde shells were fabricated utilizing in situ polymerization, with iron nano-particles as magnetic particles. The thermal properties, surface morpho...Magnetic microcapsules containing paraffin cores within urea-formaldehyde shells were fabricated utilizing in situ polymerization, with iron nano-particles as magnetic particles. The thermal properties, surface morphologies, magnetic properties and iron nano-particles content of the magnetic phasechange microcapsules were investigated by scanning electronic microscopy (SEM), differential scan- ning calorimetry (DSC), vibrating sample magnetometry (VSM) and inductively coupled plasma quantometry (ICP). The influence of iron nano-particles on morphologies was also considered. The results indicate that the melting point of magnetic phase-change microcapsules is almost identical to that of paraffin. The magnetism parameters such as specific saturation magnetization and residual magnetization of magnetic phase-change microcapsules increase with the increase of iron nano-particles content.展开更多
Microcapsules incorporating phase change material n-octadecane(ODE)shelled with crosslinked polystyrene(CLPS)were prepared via the suspension polymerization.SiC nanoparticles(nano-SiC)were employed to modify the shell...Microcapsules incorporating phase change material n-octadecane(ODE)shelled with crosslinked polystyrene(CLPS)were prepared via the suspension polymerization.SiC nanoparticles(nano-SiC)were employed to modify the shell to improve the heat transfer and photothermal conversion of the microcapsules.The scanning electron microscopic analysis revealed the microcapsules of a general spherical shape.The surface components and chemical composition of the microcapsule samples were evaluated by the energy-dispersive X-ray and Fourier transform infrared spectroscopy,confirming that the nano-SiC have been embedded in the CLPS shell.Results show that the microcapsule sample with 1.25 wt.%nano-SiC(denoted as MPCM3)exhibits the best heat property among the four kinds of samples prepared with various nano-SiC dosages,and all the nano-SiC doped samples have improved thermal conductivity and photothermal conversion as compared to the microcapsule sample without doping(denoted as MPCM1).Compared to the MPCM1,the thermal conductivity of the MPCM3 is increased by 65.3%,reaching 0.124±0.005 W·m^(−1)·K^(−1).The MPCM3 has excellent thermal stability as well.Differential scan-ning calorimetry examination shows that the MPCM3 has higher melting and crystallization enthalpies than the MPCM1,achieving 106.8±0.3 J·g^(−1) and 104.9±0.2 J·g^(−1),respectively.In the photothermal conversion experi-ments,the MPCM3 exhibited great photothermal conversion capability,with a 54.91%photothermal conversion efficiency,which is 145.68%higher than that of the MPCM1.展开更多
In order to maintain the optimal operating temperature of the battery surface and meet the demand for thermal storage technology,battery thermal management system based on phase change materials has attracted increasi...In order to maintain the optimal operating temperature of the battery surface and meet the demand for thermal storage technology,battery thermal management system based on phase change materials has attracted increasing interest.In this work,a kind of core-shell structured microcapsule was synthesized by an in-situ polymerization,where paraffin was used as the core,while methanol was applied to mod-ify the melamine-formaldehyde shell to reduce toxicity and improve thermal stability.Moreover,three different types of heat conductive fillers with the same content of 10 wt.%,i.e.,nano-Al_(2)O_(3),nano-ZnO and carbon nanotubes were added,generating composites.The microcapsules were uniform,and were not affected by the thermal fillers,which were evenly dispersed around.The composite sample with carbon nanotubes(10 wt.%)showed the highest thermal conductivity of 0.50 W/(m K)and latent heat of 139.64 J/g.Furthermore,according to the leakage testing and battery charge/discharge experiments,compared with Al_(2)O_(3)and ZnO,the addition of carbon nanotubes remarkably enhances the heat storage ability as latent heat from 126.98 J/g for the prepared sample with Al_(2)O_(3)and 125.86 J/g for the one with ZnO,then to 139.64 J/g,as well as dissipation performance as a cooling effect by decreasing the sur-face temperature of battery from 2%to 12%of microcapsule,composite sample with carbon nanotubes presents a broad application prospect in battery thermal management system and energy storage field.展开更多
文摘Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule technology of phase change materials and its main functions and the structural composition, preparation methods and characterization technology of microcapsule of phase change materials. The microcapsule of phase change materials is small in size and its temperature remains unchanged during the process of heat absorption and heat release. It is of great value in research and application prospect due to these characteristics.
文摘Phase change microcapsules can carry large amounts of heat and be dispersed into other mediums either as a solid composite or as slurry fluids without changes to their appearance or fluidity. These two standout features make phase change microcapsules ideal for use in thermal energy applications to enhance the efficiency of energy utilisation. This review paper includes methods used for the encapsulation of phase change materials, especially the method suitable for large scale productions, the trends of phase change microcapsule development and their use in thermal energy applications in static and dynamic conditions. The effect of phase change microcapsules on convective heat transfer through addition to thermal fluids as slurries is critically reviewed. The review highlighted that so far the phase change microcapsules used mainly have polymeric shells, which has very low thermal conductivities. Their enhancement in convective heat transfer was demonstrated in locations where the phase change material experiences phase change. The phase change results in the slurries having higher apparent local specific heat capacities and thus higher local heat transfer coefficients. Out of the phase change region, no enhancement is observed from the solid microcapsule particles due to the low specific heat capacity and thermal conductivity of the phase change microcapsules compared to that of water, which is normally used as slurry media in the test. To further the research in this area, phase change microcapsules with higher specific heat capacity, higher thermal conductivity and better shape stability need to be applied.
文摘Phase change microcapsules(PCMs)are prepared with n-hexadecane and n-octadecane as core material,and melamine-formaldehyde resin is used as shell material by in-situ polymerization.Differential scanning calorimetry(DSC)was used to analyze the phase change properties.Thermal conductivity and maximum heat flux of cotton fabric finished with PCMs before and after being washed were also measured.It has been found that melting and crystal enthalpy of the PCMs decrease with decreasing the core/shell ratio,while qmax of fabric treated with PCMs decreases and the thermal conductivity increases.Study shows that fabric finished by the PCMs has good temperature conditioning function.
基金supported by the National Key Research and Development Program of china(No.2018YFD1101005)and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Cold chain transportation is currently a hot research topic.Since the traditional refrigeration methods lead to the consumption of large amounts of energy,the search for new energy storage materials is a major trend.In the present contribution,n-dodecane/PMMA microencapsulated phase change materials were prepared by suspension polymerization for ice-temperature cold chain transportation and their preparation parameters were explored using the encapsulation ratio as optimization indicator.The results show that the n-dodecane-containing microcapsules have a maximum encapsulation ratio of 93.2%when using a core-to-wall ratio of 3:1,5%of emulsifier,30%of crosslinker,and 2000 rpm of emulsification speed.The phase transition temperature and enthalpy are-2℃and 195.9 kJ/kg,respectively.The microcapsules prepared with the optimized process parameters have good microscopic morphology,high energy storage efficiency,uniform particle size and good thermal stability,making them ideal materials for cold chain transportation.
基金supported by the National Natural Science Foundation of China(Nos.51973205 and 51773189)the Fundamental Research Funds for the Central Universities(Nos.WK9110000066,WK3450000005 and WK3450000006)。
文摘The design and synthesis of novel photocatalyst with self-temperature control function is an important topic in the field of advanced environmental functional materials.In this work,submicron-sized magnetic phase change microcapsules composed of paraffin core and Fe_(3)O_(4)-loaded silica shell are prepared,on which the Bi_(2)WO_(6)crystals is grown in situ through hydrothermal reaction to obtain novel magnetic phase-change-microcapsule-supported Bi_(2)WO_(6)catalyst(MP@FS/BWO).The MP@FS/BWO has a paraffin encapsulation ratio of 57.1%,and the phase change enthalpy of 105.1 J/g in a temperature range of 50–60℃,which endows the MP@FS/BWO with a certain self-temperature regulation ability.MP@FS/BWO shows excellent catalytic performance in the decomposition of rhodamine B under the simulated sunlight irradiation.After the light source is turned off,it still has good catalytic ability by maintaining high temperature due to its temperature control function based on the phase transition process.The MP@FS/BWO can be easily recycled by magnetic separation and shows good structural stability and reusability.This work provides a new idea for the development of long-effect and energy-saving outdoor photocatalysts.
基金supported by the Youth Promotion of Guangdong Natural Science Foundation(2024A1515030005)Guangdong Province University Key Field Special Program(2023ZDZX3002)+9 种基金High-end Foreign Experts Recruitment Plan of China,State Key Laboratory of Pulp and Paper Engineering(202314)Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China,Southwest Forestry University(2023KF11)Programs of Science and Technology Department of Yunnan Province(202301AT070217)Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering(SKLBEE2022006)National Natural Science Foundation of China(51973175,22107024,52103045)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(2023B1212060065)MOE International Laboratory for Optical Information Technologiesthe 111 ProjectScience and Technology Bureau of Huzhou(2022GG24)ScienceK Ltd.
文摘Phase change materials(PCMs)have attracted significant attention in thermal management due to their ability to store and release large amounts of heat during phase transitions.However,their widespread application is restricted by leakage issues.Encapsulating PCMs within polymeric microcapsules is a promising strategy to prevent leakage and increase heat transfer area with matrices.Moreover,photothermal PCM microcapsules are particularly desirable for solar energy storage.Herein,we fabricated photothermal PCM microcapsules with melamine-formaldehyde resin(MF)as shell using cellulose nanocrystal(CNC)and graphene oxide(GO)co-stabilized Pickering emulsion droplets as templates.CNC displays outstanding Pickering emulsifying ability and can facilitate the fixation of GO at the oil-water interface,resulting in a stable CNC/GO co-stabilized PCM Pickering emulsion.A polydopamine(PDA)layer was coated in-situ on the emulsion droplets via oxidization self-polymerization of dopamine.Meanwhile,GO was reduced to reduced GO(rGO)due to the reducing ability of PDA.The outmost MF shell of the PCM microcapsules was formed in-situ through the polymerization and crosslinking of MF prepolymer.The resulted PCM@CNC/rGO/PDA/MF microcapsules exhibit uniform sizes in the micrometer range,excellent leakage-proof performance,high phase change enthalpy(175.4 J g^(−1))and PCM encapsulation content(84.2%).Moreover,the presence of rGO and PDA endows PCM@CNC/rGO/PDA/MF microcapsules with outstanding photothermal conversion performance.The temperature of PCM@CNC/rGO/PDA/MF microcapsule slurries(15wt.%)can reach 73°C after light irradiation at 1 W cm^(−2).Therefore,photothermal PCM@CNC/rGO/PDA/MF microcapsules are promising for solar energy harvesting,thermal energy storage,and release in various applications,such as energy-efficient buildings and smart textiles.
基金the financial support from the National Basic Research Program of China(No. 2009CB623200)the National Natural Science Foundation of China(No.50539040)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ 0725).
文摘This paper gives a brief report of the preparation of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials(HMPM).The sealing performance and thermal stability of HMPM was enhanced much more effectively than that of microcapsule with polyurea shell material(HPM).The results of microscopical imaging analysis system,DSC,TG,and laser particle analyzer were briefly introduced.
基金the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education(Jianghan University)(No.JDGD-201604)。
文摘A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization method followed by silver reduction.Fourier-transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy with energy dispersive X-ray spectrometry(SEM/EDS),thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC)were used to characterize the chemical structure,morphology and thermal properties of the as-prepared silver-coated microPCMs.FTIR analysis confirmed the successful encapsulation of TD with MUF wall materials.The SEM and EDS results indicated that the prepared silver-coated MUF microPCMs exhibited uniform spherical shape with a perfect silver outer layer.From XRD analysis,the Ag metal dispersed on the surface of microcapsules presented the form of elementary substance.The deposition weight of silver particles on the microcapsule surface increased with increasing the amount of silver nitrate,as indicated by EDS tests.The DSC results indicated that the melting temperature and the melting latent heat of microPCMs modified with 0.7g of silver nitrate in 150mL aqueous solution were 39.2°C and 126.6J·g^-1,respectively.Supercooling of the microPCMs coated with silver particles was effectively suppressed,compared with that of microPCMs without Ag.Thus,the encapsulation of TD with silver-coated MUF shell developed by this work can be an effective method to prepare the microPCMs with enhanced thermal transfer performance and phase change properties.
文摘It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experiment, toluene diisocyanate, diphenyl methane diisocyanate and hexamethylenediisocyanate were used to form the polyurethane shell and the effects of them on the heat storage density and the microencapsulation efficiency were investigated. Furthermore, the effect of supercooling prevention agent on the phase change behavior of erythritol was investigated. The microcapsules prepared with toluendiisocyanate monomer showed the highest heat storage density and the higher microencapsulation efficiency. Considerable supercooling phenomenon in the microcapsule was observed and prevented to a certain degree by addition of potassium dihydrogen phosphate and calcium sulfate as the supercooling prevention agent.
文摘Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology.
基金Project(50572045) supported by the National Natural Science Foundation of Chinaproject supported by Innovation Fund from the PetroChina Company Limited
文摘For thermal energy storage application in energy-saving building materials,silica microcapsules containing phase change material were prepared using sol-gel method in O/W emulsion system. In the system droplets in microns are formed by emulsifying an organic phase consisting of butyl-stearate as core material. The silica shell was formed via hydrolysis and condensation from tetraethyl silicate with acetate as catalyst. The SEM photographs show the particles possess spherical morphology and core-shell structure. The as-prepared silica microcapsules mainly consist of microsphere in the diameter of 3-7 μm and the median diameter of these microcapsules equals to 5.2 μm. The differential scanning calorimetry(DSC) curves indicate that the latent heat and the melting point of microcapsules are 86 J/g and 22.6 ℃,respectively. The results of DSC and TG further testify the microcapsules with core-shell structure.
基金Funded by Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC38400)the National Natural Science Foundation of China(Nos.51303131 and 51303128)
文摘We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. The phase change microcapsules(microPCMs) were prepared by an in situ polymerization using sodium dodecyl sulfate(SDS) and polyvinyl alcohol(PVA) as emulsifiers. Surface morphology, particle size, chemical structure, and thermal properties of microPCMs were, respectively, characterized by using scanning electron microscopy(SEM), field emission scanning electron microscopy(FESEM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), and thermal gravimetric analysis(TGA). Low-temperature resistance performances were measured at-15,-30,-45, and-60 ℃ after microPCMs were coated on a cotton fabric by foaming technology. The results showed that spherical microPCMs had 4.4 μm diameter and 100 nm wall thickness. The melting and freezing temperatures and the latent heats of the microPCMs were determined as 28.9 and 29.6 ℃ as well as 110.0 and 115.7 J/g, respectively. Encapsulation of n-alkane mixture achieved 84.9 %. TGA analysis indicated that the microPCMs had good chemical stability below 250 ℃. The results showed that the microencapsulated n-alkane mixture had good energy storage potential. After the addition of 10 % microPCMs, low-temperature resistance duration was prolonged by 126.9%, 145.5%, 128.6%, and 87.5% in environment of-15,-30,-45 and-60 ℃, respectively as compared to pure fabric. Based on the results, phase change microcapsule plays an effective role in lowtemperature protection field for the human body.
基金The financial supports provided by National Basic Research Program of China (Grant No.2012CB933200)National Natural Science Foundation of China (Grant No. 51106151) are gratefully acknowledgedprovided by State Key Laboratory of Polymer Physics and Chemistry,Institute of Chemistry, Chinese Academy of Sciences
文摘The 3ω approach was used to measure the effective thermal conductivity of phase-change material microcapsules (PCMMs) based on urea formaldehyde and sliced paraffin. The effective thermal conductivities of PCMMs with different densities were measured within the phase-change temperature range. The relationships between effective thermal conductivity, density and temperature were analysed. The effective thermal conductivity reached peak values within the phase-change temperature range and the temperature peak value was consistent with the peak value of the phase-change temperature. The effective thermal conductivity increased with increasing density due to the decreased porosity of samples and their increased solid-phase conduction.
基金Supported by National Natural Science Foundation of China (Grant No. 50436020)
文摘Magnetic microcapsules containing paraffin cores within urea-formaldehyde shells were fabricated utilizing in situ polymerization, with iron nano-particles as magnetic particles. The thermal properties, surface morphologies, magnetic properties and iron nano-particles content of the magnetic phasechange microcapsules were investigated by scanning electronic microscopy (SEM), differential scan- ning calorimetry (DSC), vibrating sample magnetometry (VSM) and inductively coupled plasma quantometry (ICP). The influence of iron nano-particles on morphologies was also considered. The results indicate that the melting point of magnetic phase-change microcapsules is almost identical to that of paraffin. The magnetism parameters such as specific saturation magnetization and residual magnetization of magnetic phase-change microcapsules increase with the increase of iron nano-particles content.
基金supported by the National Natural Science Founda-tion of China(Grant No.:51776116)Shanghai Science and Technology Project(Grant No.:22010500600).
文摘Microcapsules incorporating phase change material n-octadecane(ODE)shelled with crosslinked polystyrene(CLPS)were prepared via the suspension polymerization.SiC nanoparticles(nano-SiC)were employed to modify the shell to improve the heat transfer and photothermal conversion of the microcapsules.The scanning electron microscopic analysis revealed the microcapsules of a general spherical shape.The surface components and chemical composition of the microcapsule samples were evaluated by the energy-dispersive X-ray and Fourier transform infrared spectroscopy,confirming that the nano-SiC have been embedded in the CLPS shell.Results show that the microcapsule sample with 1.25 wt.%nano-SiC(denoted as MPCM3)exhibits the best heat property among the four kinds of samples prepared with various nano-SiC dosages,and all the nano-SiC doped samples have improved thermal conductivity and photothermal conversion as compared to the microcapsule sample without doping(denoted as MPCM1).Compared to the MPCM1,the thermal conductivity of the MPCM3 is increased by 65.3%,reaching 0.124±0.005 W·m^(−1)·K^(−1).The MPCM3 has excellent thermal stability as well.Differential scan-ning calorimetry examination shows that the MPCM3 has higher melting and crystallization enthalpies than the MPCM1,achieving 106.8±0.3 J·g^(−1) and 104.9±0.2 J·g^(−1),respectively.In the photothermal conversion experi-ments,the MPCM3 exhibited great photothermal conversion capability,with a 54.91%photothermal conversion efficiency,which is 145.68%higher than that of the MPCM1.
基金supported by the National Natural Science Foundation of China(Nos.12202410 and 51906238)the China Postdoctoral Science Foundation(No.2023M733935)+4 种基金the Natural Science Foundation of Hunan Province(No.2023JJ40726)the Research Project Supported by the Shanxi Scholarship Council of China(No.2022-139)the Natural Science Foundation of Shanxi Province(Nos.20210302123017 and 2023recipient Changcheng Liu)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(No.20220012)the Changsha Municipal Natural Science Foundation(No.kq2208277).
文摘In order to maintain the optimal operating temperature of the battery surface and meet the demand for thermal storage technology,battery thermal management system based on phase change materials has attracted increasing interest.In this work,a kind of core-shell structured microcapsule was synthesized by an in-situ polymerization,where paraffin was used as the core,while methanol was applied to mod-ify the melamine-formaldehyde shell to reduce toxicity and improve thermal stability.Moreover,three different types of heat conductive fillers with the same content of 10 wt.%,i.e.,nano-Al_(2)O_(3),nano-ZnO and carbon nanotubes were added,generating composites.The microcapsules were uniform,and were not affected by the thermal fillers,which were evenly dispersed around.The composite sample with carbon nanotubes(10 wt.%)showed the highest thermal conductivity of 0.50 W/(m K)and latent heat of 139.64 J/g.Furthermore,according to the leakage testing and battery charge/discharge experiments,compared with Al_(2)O_(3)and ZnO,the addition of carbon nanotubes remarkably enhances the heat storage ability as latent heat from 126.98 J/g for the prepared sample with Al_(2)O_(3)and 125.86 J/g for the one with ZnO,then to 139.64 J/g,as well as dissipation performance as a cooling effect by decreasing the sur-face temperature of battery from 2%to 12%of microcapsule,composite sample with carbon nanotubes presents a broad application prospect in battery thermal management system and energy storage field.