期刊文献+
共找到589篇文章
< 1 2 30 >
每页显示 20 50 100
Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
1
作者 李耀隆 李松远 +1 位作者 王美芬 张任良 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期66-69,共4页
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te... Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion. 展开更多
关键词 molecular dynamics thermal drive nanotube hoop mass transport
下载PDF
Thermal transport in composition graded silicene/germanene heterostructures
2
作者 曹增强 王超宇 +2 位作者 张宏岗 游波 倪宇翔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期49-54,共6页
Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,... Through equilibrium and non-equilibrium molecular dynamics simulations,we have demonstrated the inhibitory effect of composition graded interface on thermal transport behavior in lateral heterostructures.Specifically,we investigated the influence of composition gradient length and heterogeneous particles at the silicene/germanene(SIL/GER)heterostructure interface on heat conduction.Our results indicate that composition graded interface at the interface diminishes the thermal conductivity of the heterostructure,with a further reduction observed as the length increases,while the effect of the heterogeneous particles can be considered negligible.To unveil the influence of composition graded interface on thermal transport,we conducted phonon analysis and identified the presence of phonon localization within the interface composition graded region.Through these analyses,we have determined that the decrease in thermal conductivity is correlated with phonon localization within the heterostructure,where a stronger degree of phonon localization signifies poorer thermal conductivity in the material.Our research findings not only contribute to understanding the impact of interface gradient-induced phonon localization on thermal transport but also offer insights into the modulation of thermal conductivity in heterostructures. 展开更多
关键词 composition graded interface thermal transport phonon localization molecular dynamics
下载PDF
GaInX_3(X=S,Se,Te):Ultra-low thermal conductivity and excellent thermoelectric performance
3
作者 段志福 丁长浩 +6 位作者 丁中科 肖威华 谢芳 罗南南 曾犟 唐黎明 陈克求 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期460-465,共6页
Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transpo... Seeking intrinsically low thermal conductivity materials is a viable strategy in the pursuit of high-performance thermoelectric materials.Here,by using first-principles calculations and semiclassical Boltzmann transport theory,we systemically investigate the carrier transport and thermoelectric properties of monolayer Janus GaInX_(3)(X=S,Se,Te).It is found that the lattice thermal conductivities can reach values as low as 3.07 W·m^(-1)·K^(-1),1.16 W·m^(-1)·K^(-1)and 0.57 W·m^(-1)·K^(-1)for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively,at room temperature.This notably low thermal conductivity is attributed to strong acoustic-optical phonon coupling caused by the presence of low-frequency optical phonons in GaInX_(3) materials.Furthermore,by integrating the charac teristics of electronic and thermal transport,the dimensionless figure of merit ZT can reach maximum values of 0.95,2.37,and 3.00 for GaInS_(3),GaInSe_(3),and GaInTe_(3),respectively.Our results suggest that monolayer Janus GaInX_(3)(X=S,Se,Te)is a promising candidate for thermoelectric and heat management applications. 展开更多
关键词 thermoelectric performance thermal conductivity Boltzmann transport two-dimensional materials
下载PDF
Review of thermal transport and electronic properties of borophene 被引量:1
4
作者 李登峰 陈颖 +3 位作者 何佳 汤琪琪 钟承勇 丁光前 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期33-42,共10页
In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first... In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first give a general survey of some notable electronic properties of borophene, including the superconductivity and topological characters. We then mainly review the basic approaches, thermal transport, as well as the mechanical properties of borophene with different configurations. This review gives a general understanding of some of the crucial thermal transport and electronic properties of borophene, and also calls for further experimental investigations and applications on certain scientific community. 展开更多
关键词 borophene thermal transport electronic property
下载PDF
Thermal Transport in Methane Hydrate by Molecular Dynamics and Phonon Inelastic Scattering 被引量:2
5
作者 王照亮 苑昆鹏 唐大伟 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期72-75,共4页
The heat conduction and thermal conductivity for methane hydrate are simulated from equilibrium molecular dynamics. The thermal conductivity and temperature dependence trend agree well with the experimental results. T... The heat conduction and thermal conductivity for methane hydrate are simulated from equilibrium molecular dynamics. The thermal conductivity and temperature dependence trend agree well with the experimental results. The nonmonotonic temperature dependence is attributed to the phonon inelastic scattering at higher temperature and to the confinement of the optic phonon modes and low frequency phonons at low temperature. The thermal conductivity scales proportionally with the van der Waals interaction strength, The conversion of a crystal-like nature into an amorphous one oecurs at higher strength. Both the temperature dependence and interaction strength dependence are explained by phonon inelastic scattering. 展开更多
关键词 thermal transport in Methane Hydrate by Molecular Dynamics and Phonon Inelastic Scattering THZ
下载PDF
A Genetic Algorithm for Simultaneous Determination of Thin Films Thermal Transport Properties and Contact Resistance
6
作者 Zhengxing HUANG Zhen'an TANG +2 位作者 Ziqiang XU Haitao DING Yuqin GU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期339-341,共3页
A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) sy... A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) system was employed for the measurements. The GA was used to extract the thermal properties. Measurements were performed on SiO2 thin films of different thicknesses on silicon substrate. The results show that the GA accompanied with the PPR system is useful for the simultaneous determination of thermal properties of thin films on a substrate. 展开更多
关键词 Thin film thermal transport properties thermal contact resistance Genetic algorithm
下载PDF
Material properties dependent on the thermal transport in a cylindrical nanowire
7
作者 张勇 谢忠祥 +2 位作者 邓元祥 喻霞 李科敏 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期440-444,共5页
Using the elastic wave continuum model, we investigate the effect of material properties on ballistic thermal transport in a cylindrical nanowire. A comparative analysis for the convexity-shaped and concavity-shaped s... Using the elastic wave continuum model, we investigate the effect of material properties on ballistic thermal transport in a cylindrical nanowire. A comparative analysis for the convexity-shaped and concavity-shaped structure is made. It is found that in the convexity-shaped structure, the material with higher wave velocity in the convexity region can increase the thermal conductance at the lower temperature range; the thermal conductance of the nanowire with higher wave velocity in the convexity region is lower than that of the nanowire with lower wave velocity in the convexity region at the higher temperature range. However, in the concavity-shaped structure, the material properties of the concavity region have less effect on the thermal conductance at the lower temperature range; the material with higher wave velocity in the concavity region can reduce the thermal conductance at the higher temperature range. A brief analysis of these results is given. 展开更多
关键词 acoustic phonon transport NANOSTRUCTURE transmission coefficient thermal conductance
下载PDF
An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite 被引量:1
8
作者 李承业 赵长颖 顾骁坤 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期342-351,共10页
We propose an optimized scheme to determine the smearing parameter in the Gaussian function that is used to replace the Dirac δ function in the first Brillouin zone sampling. The broadening width is derived by analyz... We propose an optimized scheme to determine the smearing parameter in the Gaussian function that is used to replace the Dirac δ function in the first Brillouin zone sampling. The broadening width is derived by analyzing the difference of the results from the phase-space method and Gaussian broadening method. As a demonstration, using the present approach,we investigate the phonon transport in a typical layered material, graphite. Our scheme is benchmarked by comparing with other zone sampling methods. Both the three-phonon phonon scattering rates and thermal conductivity are consistent with the prediction from the widely used tetrahedron method and adaptive broadening method. The computational efficiency of our scheme is more than one order of magnitude higher than the two other methods. Furthermore, the effect of fourphonon scattering in phonon transport in graphite is also investigated. It is found that four-phonon scattering reduces the through-plane thermal conductivity by 10%. Our methods could be a reference for the prediction of thermal conductivity of anisotropic material in the future. 展开更多
关键词 GRAPHITE thermal conductivity phonon transport Boltzmann transport equation
下载PDF
Nanoscale thermal transport: Theoretical method and application
9
作者 曾育佳 刘岳阳 +1 位作者 周五星 陈克求 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期43-59,共17页
With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very ... With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. 展开更多
关键词 thermal transport thermoelectric materials NANOSTRUCTURE
下载PDF
Study on Thermal Transport Coefficient of Electron in the Siliconized HT-7 Tokamak
10
作者 张先梅 万宝年 +1 位作者 陆元成 滕月莉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第5期1949-1954,共6页
Siliconization is a normal method for the first-wall conditioning on the HT-7 toka-mak. After siliconization the total radiation loss is reduced significantly. Heat-diffusion coefficient the electron of is reduced obv... Siliconization is a normal method for the first-wall conditioning on the HT-7 toka-mak. After siliconization the total radiation loss is reduced significantly. Heat-diffusion coefficient the electron of is reduced obviously at the outer half radius (r/a > 0.5) after siliconization. And the plasma confinement is improved effectively. At the core of the plasma, electromagnetic drift-wave mode driven by the temperature gradient of electron gives a good representation of the experimental data not only before siliconization but also after siliconization. But at the outer half radius, the Parail's electromagnetic drift-wave even mode gives a good description of the experimental data before siliconization, and the experimental data of Xe is close to the collisionless electrostatic drift-wave mode turbulence after siliconization. 展开更多
关键词 electron thermal transport coefficient siliconization TOKAMAK
下载PDF
Experimental and simulation studies of thermal transport based on plasma flow motion in laser-ablated dense regions of Au and CH
11
作者 Yuxue Zhang Bo Qing +9 位作者 Yang Zhao Tianming Song Zhiyu Zhang Gang Xiong Chengwu Huang Tuo Zhu Min Lv Yan Zhao Jiyan Zhang Jiamin Yang 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第4期40-49,共10页
A practical experimental method is proposed to investigate thermal transport by characterizing the motion of plasma flows through a x-ray spectroscopic technique using tracers.By simultaneously measuring multiple para... A practical experimental method is proposed to investigate thermal transport by characterizing the motion of plasma flows through a x-ray spectroscopic technique using tracers.By simultaneously measuring multiple parameters,namely,the mass-ablation rate,the temporal evolution of plasma flow velocities and trajectories and the temperature,it is possible to observe a variety of physical processes,such as shock wave compression,heating by thermal waves,and plasma thermal expansion,and to determine their relative importance in different phases during the irradiation of CH and Au targets.From a comparison with hydrodynamic simulations,we find significant differences in the motion of the plasma flows between CH and Au,which can be attributed to different sensitivities to the thermal transport process.There are also differences in the ablation and electron temperature histories of the two materials.These results confirm that velocities and trajectories of plasma motion can provide useful evidence in the investigation of thermal conduction,and the approach presented here deserves more attention in the context of inertial confinement fusion and high-energy-density physics. 展开更多
关键词 thermal transport MOTION
下载PDF
First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
12
作者 常征 苑昆鹏 +4 位作者 孙哲浩 张晓亮 高宇飞 弓晓晶 唐大伟 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期25-35,共11页
The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulat... The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann transport equation(BTE),we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures(WS2/WSe2-BHs).The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature(RT)was 62.98 W/mK,which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers.Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling,mainly dominating the lattice thermal conductivity.Further,we also noticed that the phonon mean free path(MFP)of the WS2/WSe2-BHs(233 nm)was remarkably attenuated by the free-standing monolayer WS2(526 nm)and WSe2(1720 nm),leading to a small significant size effect of the WS2/WSe2-BHs.Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties. 展开更多
关键词 WS2/WSe2 bilayer heterostructures thermal transport FIRST-PRINCIPLES Boltzmann transport equation
下载PDF
Thermal transport in twisted few-layer graphene
13
作者 王敏华 谢月娥 陈元平 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期408-413,共6页
Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best o... Twisted graphene possesses unique electronic properties and applications, which have been studied extensively. Recently, the phonon properties of twisted graphene have received a great deal of attention. To the best of our knowledge,thermal transports in twisted graphene have been investigated little to date. Here, we study perpendicular and parallel transports in twisted few-layer graphene(T-FLG). It is found that perpendicular and parallel transports are both sensitive to the rotation angle θ between layers. When θ increases from 0° to 60°, perpendicular thermal conductivity κ(||) first decreases and then increases, and the transition angle is θ = 30°. For the parallel transport, the relation between thermal conductivity κand θ is complicated, because intra-layer thermal transport is more sensitive to the edge of layer than their stacking forms. However, the dependence of interlayer scattering on θ is similar to that of κ⊥. In addition, the effect of layer number on the thermal transport is discussed. Our results may provide references for designing the devices of thermal insulation and thermal management based on graphene. 展开更多
关键词 twisted graphene thermal transport rotation angle thermal conductivity
下载PDF
An Analytical Approach to Thermal and Electrical Transport in a Mesoscopic Conductor
14
作者 WANG Zheng-Chuan SU Gang +1 位作者 LI Ling GAO Jie 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4X期735-742,共8页
In order to consider the thermal and electrical coherent transport in a mesoscopic conductor under the influence of electron-electron interaction, in this paper, we establish a method in terms of which one can analyti... In order to consider the thermal and electrical coherent transport in a mesoscopic conductor under the influence of electron-electron interaction, in this paper, we establish a method in terms of which one can analytically obtain the Hartree self-consistent potential instead of computing it by the numerical iterative procedure as usual, which is convenient for us to describe the thermal and electric current flow through a mesoscopic conductor. If we study the electron-electron interaction at the Hartree approximation level, the Hartree potential satisfies the Poisson equation and Schrodinger equation, so when we expand the action function S(x) by Planck constant h, the self-consistent potential and the wavefunction can be solved analytically order by order, and the thermal and electrical conductance can thus be obtained readily. However, we just show the quantum corrections up to the second order. 展开更多
关键词 热电传输 交互作用 自调和电压 POISSON方程 波函数
下载PDF
Effects of thermal transport properties on temperature distribution within silicon wafer
15
作者 王爱华 牛义红 +1 位作者 陈铁军 P.F.HSU 《Journal of Central South University》 SCIE EI CAS 2014年第4期1402-1410,共9页
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface... A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level. 展开更多
关键词 温度分布 热传导性能 硅晶片 辐射传热模型 吸收系数 温度监视器 快速热处理 非均匀性
下载PDF
Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
16
作者 王甫 孙彦东 +2 位作者 邹宇 徐贲 付宝勤 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期373-380,共8页
Stacking faults(SFs)are often present in silicon carbide(SiC)and affect its thermal and heat-transport properties.However,it is unclear how SFs influence thermal transport.Using non-equilibrium molecular dynamics and ... Stacking faults(SFs)are often present in silicon carbide(SiC)and affect its thermal and heat-transport properties.However,it is unclear how SFs influence thermal transport.Using non-equilibrium molecular dynamics and lattice dynamics simulations,we studied phonon transport in SiC materials with an SF.Compared to perfect SiC materials,the SF can reduce thermal conductivity.This is caused by the additional interface thermal resistance(ITR)of SF,which is difficult to capture by the previous phenomenological models.By analyzing the spectral heat flux,we find that SF reduces the contribution of low-frequency(7.5 THz-12 THz)phonons to the heat flux,which can be attributed to SF reducing the phonon lifetime and group velocity,especially in the low-frequency range.The SF hinders phonon transport and results in an effective interface thermal resistance around the SF.Our results provide insight into the microscopic mechanism of the effect of defects on heat transport and have guiding significance for the regulation of the thermal conductivity of materials. 展开更多
关键词 silicon carbide stacking fault thermal conductivity interface thermal resistance phonon transport spectral heat flux
下载PDF
Transport properties of CrP
17
作者 周学博 郑萍 +2 位作者 吴伟 隋郁 雒建林 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期465-468,共4页
CrP has many exotic physical properties due to a four-fold degenerate band crossing at the Y point of the Brillouin zone,which is protected by the nonsymmorphic symmetry of the space group.We carried out the heat capa... CrP has many exotic physical properties due to a four-fold degenerate band crossing at the Y point of the Brillouin zone,which is protected by the nonsymmorphic symmetry of the space group.We carried out the heat capacity,electrical and thermal transport measurements on CrP and extracted the electron thermal conductivity.Due to the difference in energy and momentum relaxation time during electron-phonon inelastic scattering,the normalized Lorentz number decreases below about 160 K.Below 25.6 K,the normalized Lorentz number begins to recover,which is due to the dominance of elastic scattering between electrons and defects at low temperatures. 展开更多
关键词 CRP thermal transport Wiedemann-Franz law
下载PDF
Molecular dynamics study of thermal conductivities of cubic diamond,lonsdaleite,and nanotwinned diamond via machine-learned potential
18
作者 熊佳豪 戚梓俊 +6 位作者 梁康 孙祥 孙展鹏 汪启军 陈黎玮 吴改 沈威 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期594-601,共8页
Diamond is a wide-bandgap semiconductor with a variety of crystal configurations,and has the potential applications in the field of high-frequency,radiation-hardened,and high-power devices.There are several important ... Diamond is a wide-bandgap semiconductor with a variety of crystal configurations,and has the potential applications in the field of high-frequency,radiation-hardened,and high-power devices.There are several important polytypes of diamonds,such as cubic diamond,lonsdaleite,and nanotwinned diamond(NTD).The thermal conductivities of semiconductors in high-power devices at different temperatures should be calculated.However,there has been no reports about thermal conductivities of cubic diamond and its polytypes both efficiently and accurately based on molecular dynamics(MD).Here,using interatomic potential of neural networks can provide obvious advantages.For example,comparing with the use of density functional theory(DFT),the calculation time is reduced,while maintaining high accuracy in predicting the thermal conductivities of the above-mentioned three diamond polytypes.Based on the neuroevolution potential(NEP),the thermal conductivities of cubic diamond,lonsdaleite,and NTD at 300 K are respectively 2507.3 W·m^(-1)·K^(-1),1557.2 W·m^(-1)·K^(-1),and 985.6 W·m^(-1)·K^(-1),which are higher than the calculation results based on Tersoff-1989 potential(1508 W·m^(-1)·K^(-1),1178 W·m^(-1)·K^(-1),and 794 W·m^(-1)·K^(-1),respectively).The thermal conductivities of cubic diamond and lonsdaleite,obtained by using the NEP,are closer to the experimental data or DFT data than those from Tersoff-potential.The molecular dynamics simulations are performed by using NEP to calculate the phonon dispersions,in order to explain the possible reasons for discrepancies among the cubic diamond,lonsdaleite,and NTD.In this work,we propose a scheme to predict the thermal conductivity of cubic diamond,lonsdaleite,and NTD precisely and efficiently,and explain the differences in thermal conductivity among cubic diamond,lonsdaleite,and NTD. 展开更多
关键词 DIAMOND neuroevolution potential molecular dynamics thermal conductivity phonon transport
下载PDF
Thermally Evaporated ZnSe for Efficient and Stable Regular/Inverted Perovskite Solar Cells by Enhanced Electron Extraction
19
作者 Xin Li Guibin Shen +6 位作者 Xin Ren Ng Zhiyong Liu Yun Meng Yongwei Zhang Cheng Mu Zhi Gen Yu Fen Lin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期440-448,共9页
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l... Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics. 展开更多
关键词 high efficiency long-term stability planar regular/inverted perovskite solar cells thermal evaporation ZnSe electron transport layer
下载PDF
石墨烯纳米带的热输运性能研究
20
作者 刘远超 徐一帆 +2 位作者 邵钶 蒋旭浩 李耑 《化工新型材料》 CAS CSCD 北大核心 2024年第6期126-131,共6页
基于分子动力学模拟方法,研究了本征石墨烯纳米带的尺寸效应以及存在空位、N掺杂、B掺杂缺陷时,温度、缺陷浓度和不同缺陷类型对石墨烯纳米带热输运性能的综合影响,深入研究了石墨烯纳米带的声子热输运机理。结果表明:本征石墨烯纳米带... 基于分子动力学模拟方法,研究了本征石墨烯纳米带的尺寸效应以及存在空位、N掺杂、B掺杂缺陷时,温度、缺陷浓度和不同缺陷类型对石墨烯纳米带热输运性能的综合影响,深入研究了石墨烯纳米带的声子热输运机理。结果表明:本征石墨烯纳米带的热导率在400K时为107.0W/(m·K),且均随长度和宽度的增加而增加。当缺陷和温度混合效应存在时,由于声子散射和高频声子的激发,使热导率均会随浓度和温度的增加而下降。同时,不同缺陷类型在同一温度下,空位缺陷在低浓度时对热导率影响较大,但在高浓度时掺杂缺陷影响显著。其中N掺杂的影响强于B掺杂,这是由于不同原子的质量不同造成的。研究结果有助于调控石墨烯热输运特性,可为微纳电子器件的高效散热提供理论指导。 展开更多
关键词 石墨烯纳米带 热输运 缺陷 温度 分子动力学模拟
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部