A new type of the nanometer particles and epoxy/bismaleimide-triazine nanocomposites were prepared using a nanometer silica (nano-SiO2), a 4,5-epoxycyclohexane 1,2-dicarboxylic acid dilycidyl (TDE-85) epoxy resin,...A new type of the nanometer particles and epoxy/bismaleimide-triazine nanocomposites were prepared using a nanometer silica (nano-SiO2), a 4,5-epoxycyclohexane 1,2-dicarboxylic acid dilycidyl (TDE-85) epoxy resin, a 4,4'-bismaleimidodiphenymethane (BMI) and a bisphenol a dicyanate (BADCy). The properties of nano-SiOJTDE-85/BMI/BADCy composites, such as mechanical and thermal properties, were systemically investigated in detail by mechanical measurement, scanning electron microscope (SEM), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The experimental results showed that the addition of the appropriate amount of nano-SiO: could improve the impact strength and the flexural strength of the nano- SiO2/TDE-85/BMI/BADCy composites. Simultaneously, the thermal stability of the blends was found to be higher than that of the TDE-85/BMI/BADCy copolymers.展开更多
Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene sele...Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene selectivity (45%) was similar to ZSM-5-OH synthesized via a hydroxide route. However, ZSM- 5-F showed much longer lifetime (305 h) compared with ZSM-5-OH (157 h) in spite of similar crystal size and aluminum content. Characterization by NH3-TPD. Py-IR, OH-IR, SEM, TG-DTA, XRD and 1H MAS NMR techniques indicated that the enhanced catalytic performance of ZSM-S-F is attributed to the fewer structural defects in the form of internal silanol groups and silanol nests.展开更多
The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practic...The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practical applications because of the relatively low cost of fabrication, high critical current densities (Jc) and fields, large coherence length, absence of weak links, higher Tc(TC = 39K) compared with Nb3Sn and Nb-Ti alloys (two or four times that of Nb,,Sn and Nb-Ti alloys). However, the weak flux pinning in the magnetic field remains a major challenge. This paper reports the most interesting results on nanomaterial (SiC and Si) doping in magnesium diboride. The high density of nano-scale defects introduced by doping is responsible for the enhanced pinning. The fabrication method, critical current density, microstructures, flux pinning and cost for magnesium diboride bulks, wires and tapes are also discussed. It is believed that high performance SiC doped MgB2 will have a great potential for many practical applications at 5K to 25K up to 5T.展开更多
In this paper, we investigates the concretes respec- tively incorporated with 5% (m : rn) nano-SiO2 (NS), 40% (rn : m) super- fine slag (SS), as well as 40% (m : m) SS combining 20% replacement of sand vo...In this paper, we investigates the concretes respec- tively incorporated with 5% (m : rn) nano-SiO2 (NS), 40% (rn : m) super- fine slag (SS), as well as 40% (m : m) SS combining 20% replacement of sand volume with RP. The tested mechanical properties include compressive strength, abrasion resistant strength, and elastic modulus. The results indicate that among these concretes, the SS-RP concrete has the highest abrasion re- sistant strength with increment ratios of 1.71 and 1.35 at 28 days and 90 days, respectively; the SS concrete has the highest com- pressive strength with increment ratios of 2.03 and 1.95 at 28 days and 90 days, respectively; the elastic modulus of SS-RP concrete significantly decrease compared with the SS concrete and is slightly higher than that of the reference concrete. It is concluded that NS, SS, and RP all can improve the abrasion resistance of concrete, and it will be significantly improved when SS combining RP is incorporated.展开更多
采用4种不同用量的硅烷偶联剂KH-550对纳米SiO_2表面进行改性,并检测改性后纳米SiO_2粒径的大小;研究了改性后纳米SiO_2的添加量对芳纶纸性能的影响;通过扫描电镜(SEM)观察添加改性纳米SiO_2后芳纶纸的表观形貌,并将纳米SiO_2添加前后...采用4种不同用量的硅烷偶联剂KH-550对纳米SiO_2表面进行改性,并检测改性后纳米SiO_2粒径的大小;研究了改性后纳米SiO_2的添加量对芳纶纸性能的影响;通过扫描电镜(SEM)观察添加改性纳米SiO_2后芳纶纸的表观形貌,并将纳米SiO_2添加前后纸张抗张强度和介电强度进行了对比。结果表明,随着硅烷偶联剂用量的增加,改性纳米SiO_2的粒径有所减小;当纳米SiO_2与硅烷偶联剂KH-550配比为5 g∶20 m L、改性纳米SiO_2添加量为5%时,芳纶纸的抗张强度提高了66.2%,硅烷偶联剂用量的增加对纸张伸长率有一定影响,其紧度变化不明显;SEM图显示改性纳米SiO_2粒子填充在纸张空隙处利于纸张性能的增强;添加改性纳米SiO_2较未添加纳米SiO_2和添加未改性纳米SiO_2芳纶纸的抗张强度和介电强度均有所提高。展开更多
文摘A new type of the nanometer particles and epoxy/bismaleimide-triazine nanocomposites were prepared using a nanometer silica (nano-SiO2), a 4,5-epoxycyclohexane 1,2-dicarboxylic acid dilycidyl (TDE-85) epoxy resin, a 4,4'-bismaleimidodiphenymethane (BMI) and a bisphenol a dicyanate (BADCy). The properties of nano-SiOJTDE-85/BMI/BADCy composites, such as mechanical and thermal properties, were systemically investigated in detail by mechanical measurement, scanning electron microscope (SEM), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The experimental results showed that the addition of the appropriate amount of nano-SiO: could improve the impact strength and the flexural strength of the nano- SiO2/TDE-85/BMI/BADCy composites. Simultaneously, the thermal stability of the blends was found to be higher than that of the TDE-85/BMI/BADCy copolymers.
文摘Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene selectivity (45%) was similar to ZSM-5-OH synthesized via a hydroxide route. However, ZSM- 5-F showed much longer lifetime (305 h) compared with ZSM-5-OH (157 h) in spite of similar crystal size and aluminum content. Characterization by NH3-TPD. Py-IR, OH-IR, SEM, TG-DTA, XRD and 1H MAS NMR techniques indicated that the enhanced catalytic performance of ZSM-S-F is attributed to the fewer structural defects in the form of internal silanol groups and silanol nests.
文摘The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practical applications because of the relatively low cost of fabrication, high critical current densities (Jc) and fields, large coherence length, absence of weak links, higher Tc(TC = 39K) compared with Nb3Sn and Nb-Ti alloys (two or four times that of Nb,,Sn and Nb-Ti alloys). However, the weak flux pinning in the magnetic field remains a major challenge. This paper reports the most interesting results on nanomaterial (SiC and Si) doping in magnesium diboride. The high density of nano-scale defects introduced by doping is responsible for the enhanced pinning. The fabrication method, critical current density, microstructures, flux pinning and cost for magnesium diboride bulks, wires and tapes are also discussed. It is believed that high performance SiC doped MgB2 will have a great potential for many practical applications at 5K to 25K up to 5T.
基金Supported by the National Basic Research Program of China(973 Program)(2009CB623201 and 2013CB035901)the National Natural Science Foundation of China(50972109 and 51109170)the Doctoral Program of Higher Education of China(20090141110021)
文摘In this paper, we investigates the concretes respec- tively incorporated with 5% (m : rn) nano-SiO2 (NS), 40% (rn : m) super- fine slag (SS), as well as 40% (m : m) SS combining 20% replacement of sand volume with RP. The tested mechanical properties include compressive strength, abrasion resistant strength, and elastic modulus. The results indicate that among these concretes, the SS-RP concrete has the highest abrasion re- sistant strength with increment ratios of 1.71 and 1.35 at 28 days and 90 days, respectively; the SS concrete has the highest com- pressive strength with increment ratios of 2.03 and 1.95 at 28 days and 90 days, respectively; the elastic modulus of SS-RP concrete significantly decrease compared with the SS concrete and is slightly higher than that of the reference concrete. It is concluded that NS, SS, and RP all can improve the abrasion resistance of concrete, and it will be significantly improved when SS combining RP is incorporated.
文摘采用4种不同用量的硅烷偶联剂KH-550对纳米SiO_2表面进行改性,并检测改性后纳米SiO_2粒径的大小;研究了改性后纳米SiO_2的添加量对芳纶纸性能的影响;通过扫描电镜(SEM)观察添加改性纳米SiO_2后芳纶纸的表观形貌,并将纳米SiO_2添加前后纸张抗张强度和介电强度进行了对比。结果表明,随着硅烷偶联剂用量的增加,改性纳米SiO_2的粒径有所减小;当纳米SiO_2与硅烷偶联剂KH-550配比为5 g∶20 m L、改性纳米SiO_2添加量为5%时,芳纶纸的抗张强度提高了66.2%,硅烷偶联剂用量的增加对纸张伸长率有一定影响,其紧度变化不明显;SEM图显示改性纳米SiO_2粒子填充在纸张空隙处利于纸张性能的增强;添加改性纳米SiO_2较未添加纳米SiO_2和添加未改性纳米SiO_2芳纶纸的抗张强度和介电强度均有所提高。