High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,...High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.展开更多
The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, wh...The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, which were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption at 77K. The catalytic tests were performed via thermogravimetric analysis (TG) at heating rates of 5, 10 and 20˚C min<sup>−1</sup> in a temperature range from 30˚C to 900˚C. For the tests, a ratio of 30% by mass of each catalytic material mixed with PS was used and the activation energy of the degradation process was determined by the Vyazovkin method. The obtained results showed that the addition of the catalyst to the PS in general reduced its degradation temperature. The 10% CeO<sub>2</sub>/HZSM-5 catalyst showed greater efficiency, as it resulted in lower activation energy for PS degradation. Thus, the combination of CeO<sub>2</sub> with HZSM-5 resulted in materials with potential for application in the catalytic degradation of polystyrene and the results indicate that the production of a composite material can be a good strategy to generate an increase in catalytic activity and a decrease in energy process activation.展开更多
Ratio of Lewis/Brfnsted acid sites (Cl/Cb) on the surface of nano-sized HZSM-5 was successfully manipulated by means of steaming and acid leaching. Significant enhancement of the deactivation durability of nano-sized...Ratio of Lewis/Brfnsted acid sites (Cl/Cb) on the surface of nano-sized HZSM-5 was successfully manipulated by means of steaming and acid leaching. Significant enhancement of the deactivation durability of nano-sized HZSM-5 in the aromatization of fluid catalytic cracking (FCC) gasoline olefins seems to be closely related to the increase of Lewis/Brfnsted acid sites ratio.展开更多
通过调控铝源合成了四种HZSM-5分子筛,并将其应用于催化甲缩醛(DMM)气相羰基化合成甲氧基乙酸甲脂(MMAc)反应。结果表明,改变合成凝胶体系中的铝源种类,可以制备出织构性质、酸性特征相近,但骨架铝分布不同、催化羰基化性能迥异的HZSM-...通过调控铝源合成了四种HZSM-5分子筛,并将其应用于催化甲缩醛(DMM)气相羰基化合成甲氧基乙酸甲脂(MMAc)反应。结果表明,改变合成凝胶体系中的铝源种类,可以制备出织构性质、酸性特征相近,但骨架铝分布不同、催化羰基化性能迥异的HZSM-5分子筛。其中,使用硝酸铝与硫酸铝作为铝源制备的分子筛HZ-N与HZ-S表现出更为优异的催化活性,HZ-N对应的DMM转化率与MMAc选择性分别为25.3%与58.9%,HZ-S对应的DMM转化率与MMAc选择性分别为28.7%与64.6%。采用Co-ZSM-5的UV-vis-DRS与27 Al MAS NMR等表征手段详细分析证实,硝酸铝与硫酸铝作为铝源时,更多的骨架铝优先落位于HZSM-5分子筛交叉孔道,其在催化DMM羰基化反应过程中起主导作用,落位比例高,更有利于反应的进行,反之可能导致较低的DMM转化率以及更高的副产物选择性。展开更多
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.
文摘The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, which were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption at 77K. The catalytic tests were performed via thermogravimetric analysis (TG) at heating rates of 5, 10 and 20˚C min<sup>−1</sup> in a temperature range from 30˚C to 900˚C. For the tests, a ratio of 30% by mass of each catalytic material mixed with PS was used and the activation energy of the degradation process was determined by the Vyazovkin method. The obtained results showed that the addition of the catalyst to the PS in general reduced its degradation temperature. The 10% CeO<sub>2</sub>/HZSM-5 catalyst showed greater efficiency, as it resulted in lower activation energy for PS degradation. Thus, the combination of CeO<sub>2</sub> with HZSM-5 resulted in materials with potential for application in the catalytic degradation of polystyrene and the results indicate that the production of a composite material can be a good strategy to generate an increase in catalytic activity and a decrease in energy process activation.
文摘Ratio of Lewis/Brfnsted acid sites (Cl/Cb) on the surface of nano-sized HZSM-5 was successfully manipulated by means of steaming and acid leaching. Significant enhancement of the deactivation durability of nano-sized HZSM-5 in the aromatization of fluid catalytic cracking (FCC) gasoline olefins seems to be closely related to the increase of Lewis/Brfnsted acid sites ratio.
文摘通过调控铝源合成了四种HZSM-5分子筛,并将其应用于催化甲缩醛(DMM)气相羰基化合成甲氧基乙酸甲脂(MMAc)反应。结果表明,改变合成凝胶体系中的铝源种类,可以制备出织构性质、酸性特征相近,但骨架铝分布不同、催化羰基化性能迥异的HZSM-5分子筛。其中,使用硝酸铝与硫酸铝作为铝源制备的分子筛HZ-N与HZ-S表现出更为优异的催化活性,HZ-N对应的DMM转化率与MMAc选择性分别为25.3%与58.9%,HZ-S对应的DMM转化率与MMAc选择性分别为28.7%与64.6%。采用Co-ZSM-5的UV-vis-DRS与27 Al MAS NMR等表征手段详细分析证实,硝酸铝与硫酸铝作为铝源时,更多的骨架铝优先落位于HZSM-5分子筛交叉孔道,其在催化DMM羰基化反应过程中起主导作用,落位比例高,更有利于反应的进行,反之可能导致较低的DMM转化率以及更高的副产物选择性。