The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0....The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.展开更多
Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and thei...Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.展开更多
Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-...Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.展开更多
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane ...A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.展开更多
The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. Th...The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.展开更多
Sn-aniline complex was prepared by a simple procedure. Cyclic and acyclic ketones were oxidized into lactones or esters with very high selectivity and yield with 30% hydrogen peroxide in the presence of Sn-aniline com...Sn-aniline complex was prepared by a simple procedure. Cyclic and acyclic ketones were oxidized into lactones or esters with very high selectivity and yield with 30% hydrogen peroxide in the presence of Sn-aniline complex.展开更多
A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was...A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was used to prepare cathode by composite-electroplating technique. The cathodes were electrochemically charactrized. The results show that these novel cathode exhibit high activities and excellent stabilities during long-term continuous electrolysis with some current interruptions.展开更多
Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H...Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.展开更多
The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The resul...The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.展开更多
A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and pr...A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.展开更多
The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands co...The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands coordinated to one europium ion. The stability constants varied from 11.64 to 14.60 (log 13). Binary complexes exhibited rather weak luminescence in solution. 1,3,5-triazine diphosphine oxides engaged as co-ligands in Eu(Ⅲ) (2-thenoyltrifluoroacetonate)3 complex contributed to the overall photoluminescence and allowed for excitation with longer wavelengths than the parent complex.展开更多
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4 GN), as an anode mater...In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4 GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4 GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4 GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li^+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4 GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li^+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4 GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.展开更多
Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and...Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.展开更多
The title zinc(Ⅱ) complex salt [Zn(H2O)6](ClO4)2-(PNOS)4, where PNOS is derived from picolinaldehyde N-oxide with semicarbazone, has been prepared and structurally characterized by X-ray single-crystal analys...The title zinc(Ⅱ) complex salt [Zn(H2O)6](ClO4)2-(PNOS)4, where PNOS is derived from picolinaldehyde N-oxide with semicarbazone, has been prepared and structurally characterized by X-ray single-crystal analysis. It crystallizes in triclinic, space group PI with a = 7.529(3), b = 10.206(4), c = 14.678(6)A, a = 86.293(6), β= 87.686(7), γ= 81.382(6)°, C28H44Cl2N16O22Zn, Mr = 1093.06, V = 1112.3(8) ,A^3 Z = 1, Dc = 1.632 g/cm^3, S = 1.089, μ(MoKa) = 0.773 mm^-1, F(000) = 564, the final R = 0.0438 and wR = 0.1076 for 3888 independent reflections with Rint = 0.0224. The crystal structure possesses a [Zn(H2O)6]^2+ cation, two ClO4^- anions and four PNOSs. In the crystal structure, Zn^2+ cation is located at the symcenter and coordinated by six water molecules. In [Zn(H2O)6]^2+, an elongate octahedral complex cation, the average Zn-O bond length is 2.087(2) A. There exist a lot of H bonds in the structure, linking the cation [Zn(H2O)6]^2+, anion ClO4^- and PNOS to form a 3D network.展开更多
Two iron-arene complex photoinitiators with different substituents in arene ligands were synthesized, their activities in initiating photopolymerization of cyclohexene oxide (CHO) were compared with that of IRGACURE 2...Two iron-arene complex photoinitiators with different substituents in arene ligands were synthesized, their activities in initiating photopolymerization of cyclohexene oxide (CHO) were compared with that of IRGACURE 261, a commercialized photoinitiator from Ciba-Geigy. A higher activity was found when the arene ligand was substituted with a stronger electron donating group. For the system initiated by IRGACURE 261 the concentration of active centers in CHO polymerization was determined and it was found that the concentration is maximum at around 35℃. The post (dark) polymerization was significant, the polymerization yield decreased with the increase of irradiation temperature and increased with the increase of post polymerization temperature. The results are interpreted based on the mechanism proposed by Lohse, et al..展开更多
The reported X-ray structure and magnetochemical properties of [Mn6O2 (OCPh)10, (CH3CN)4], effectively derived from [NBu4][Mn4O2(O2CPh)9 (H2O)] with equivalent of tren in CH3CN is shown.
A new complex [Cd(H2biim)2(H2O)2]·(ino)2·4H2O (H2biim = 2,2'-biimidazole, ino = isonicotinate-N-oxide) has been prepared and characterized by single-crystal X-ray diffraction analysis, IR and fluore...A new complex [Cd(H2biim)2(H2O)2]·(ino)2·4H2O (H2biim = 2,2'-biimidazole, ino = isonicotinate-N-oxide) has been prepared and characterized by single-crystal X-ray diffraction analysis, IR and fluorescence spectra analysis. The crystal is of triclinic system, space group P1 with a = 7.5380(6), b = 8.0402(7), c = 13.5094(11) , α = 104.269(1), β = 93.604(1), γ = 98.349(1)°, V = 780.93(11) 3, Mr = 765.00, Dc = 1.627 g/cm3, F(000) = 390, μ = 0.776 mm-1 and Z = 1. The final R = 0.0322 and wR = 0.0825 for 7038 observed reflections with I 2σ(I) and R = 0.0341 and wR = 0.0832 for all data. The title complex exhibits an infinite chain-like structure through bridging isonicotinate-N-oxide. Strong interchain hydrogen bonds between isonicotinate-N-oxide and H2biim result in the robust 3-D supramolecular architecture. Moreover, the complex shows strong photoluminescence with emission maximum at λ = 401 nm upon λex = 330 nm.展开更多
The photocatalytic degradation on the bismuth containing complex oxide was revised in detail including the synthesis and classification of photocatalyts, and then the photocatalytic reaction, scavenger, and the mechan...The photocatalytic degradation on the bismuth containing complex oxide was revised in detail including the synthesis and classification of photocatalyts, and then the photocatalytic reaction, scavenger, and the mechanism of reaction. In particular, the perspectives of photocatalytic degradation on the bismuth containing oxide were analyzed in detail.展开更多
We report in situ doping of brushite on zinc manganese oxide(ZMO), fabricated by calcining a Mn(II) oxalate‐impregnated metal‐organic framework. The doping process was conducted in com‐bination with the photoca...We report in situ doping of brushite on zinc manganese oxide(ZMO), fabricated by calcining a Mn(II) oxalate‐impregnated metal‐organic framework. The doping process was conducted in com‐bination with the photocatalytic water oxidation reaction which was catalyzed by ZMO in neutral phosphate‐buffered aqueous solution containing [Ru(bpy)3]^2+‐Na2S2O8 and calcium(II) triflate salt, exhibiting greatly enhanced water oxidation performance with optimized turnover frequency of 0.18 mmol(O2) mol(Mn)^(–1) s^(–1). Different analytical techniques indicated that photodeposited calci‐um‐phosphate(CaP) acted as a co‐catalyst to promote the O2 evolution activity of ZMO. This system involved the use of manganese oxide and calcium ion, and the operation was conducted under am‐bient temperature and neutral conditions, thus, it efficiently mimicked the oxygen‐evolving complex in photosystem II.展开更多
Hydrotalcites known as anionic clays are found in nature. Hydrotalcites, hydrotalcite-like compounds, and calcined hydrotalcites (as mixed or complex oxides) as highly active, selective catalysts play an important rol...Hydrotalcites known as anionic clays are found in nature. Hydrotalcites, hydrotalcite-like compounds, and calcined hydrotalcites (as mixed or complex oxides) as highly active, selective catalysts play an important role in many base/catalyzed reactions. Mg/Al hydrotalcite (MAH) as precursor was used to prepare Mg/Al metal complex oxides (MAO), used as epoxidation catalysts in the current research. In this paper, some primary physical and catalytic properties of MAH and MAO were investigated. The results indicated that the qualified MAH (Mg/Al mol ratio of 3) can be achieved when the suspension was crystallized under 80°C for 16h, and after being filtered, dried at 100 °C for 5h in a oven. MAO was prepared by calcining MAH for 4h in a muffle furnace, and calcination temperature was determined to be 500 °C by a differential scanning calorimeter (DSC). Crystal structure and parameters of MAH and MAO were characterized by X/ray diffraction (XRD), good crystal structure was observed and typical peaks of MAH were detected when 2θ was at 11.5 (003), 23.0 (006), 35.0 (009), and 61.0 (110), respectively. The morphology of calcined precursor, i.e. MAO, was investigated with scanning electron microscopy (SEM);the finer lamellar structure and smaller average size of 3μm was observed. Molding research was performed and confirmed by SEM, the results indicated that the surface bulge and cavity with size of several micrometers were increased, which simultaneously suggested the increasing of specific surface area. The catalytic activity of molding MAO was finally examined by using octanol as starting reagent and ethylene oxide as reactant, and narrower molecular distribution was observed comparing with the traditional catalyst-KOH.展开更多
基金supported by the National Natural Science Foundation of China(21173100 and 21320102001)~~
文摘The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates.
基金supported by Important National Science&Technoligy Specific Projects, China (2004BA520A02)
文摘Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.
基金supported by NSFC(21073235,21173270,21177160,21376261)863 Program(2013AA065302)PetroChina Innovation Foundation(2011D-5006-0403)
文摘Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Re- search Foundation of Ministry of Education (20040674005)
文摘A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Research Foundation of Ministry of Education (20040674005)
文摘The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.
文摘Sn-aniline complex was prepared by a simple procedure. Cyclic and acyclic ketones were oxidized into lactones or esters with very high selectivity and yield with 30% hydrogen peroxide in the presence of Sn-aniline complex.
文摘A series of perovskite-type complex oxides LaNi1-xRuxO3 were prepared and studied by means of XRD. The effects of some factors on th complex oxides were discussed. Each kind of those perovskite-type complex oxides was used to prepare cathode by composite-electroplating technique. The cathodes were electrochemically charactrized. The results show that these novel cathode exhibit high activities and excellent stabilities during long-term continuous electrolysis with some current interruptions.
文摘Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.
基金Project(U1608254) supported by the Special Fund for the National Natural Science Foundation of ChinaProjects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02) supported by Zijin Mining Group Co.,Ltd.,China
文摘The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.
基金supported by the Youth Fund Project(2002B25)of Sichuan Department of Educationthe Scientific Research Foundation for Doctor from Yibin College of China(2010B12)
文摘A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.
基金support from the Polish Ministry of Science and Higher Education (3T09A 081 28)
文摘The 1,3,5-triazine diphosphine oxide ligands with donor-acceptor properties formed strong complexes with europium(Ⅲ) ion in acetonitrile. Spectrophotometric titrations and mass spectra indicated that two ligands coordinated to one europium ion. The stability constants varied from 11.64 to 14.60 (log 13). Binary complexes exhibited rather weak luminescence in solution. 1,3,5-triazine diphosphine oxides engaged as co-ligands in Eu(Ⅲ) (2-thenoyltrifluoroacetonate)3 complex contributed to the overall photoluminescence and allowed for excitation with longer wavelengths than the parent complex.
基金financial support from National Natural Science Foundation of China (No. 21373006 and No. 51801030)the Science and Technology Program of Suzhou (SYG201732)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the project of Scientific and Technologic Infrastructure of Suzhou (SZS201708)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJB430029)One-hundred Young Talents (Class A) of Guangdong University of Technology (No. 220413198)Natural Science Foundation of Guangdong Providence (No. 2018A030310571)
文摘In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4 GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4 GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4 GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li^+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4 GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li^+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4 GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.
基金supported by grants from the National Natural Science Foundation of China(Nos.81960732 and 82060733)the Natural Science Foundation of Jiangxi Province(No.20224BAB206111)+2 种基金the Science and Technology Plan of Jiangxi Provincial Health Commission(No.202311141)the Open Project of Jiangxi Provincial Key Laboratory of Drug Design and Evaluation(No.JKLDE-KF-2101)the Open Project of Key Laboratory of Modern Preparation of TCM,Ministry of Education,Jiangxi University of Chinese Medicine(No.TCM-201911).
文摘Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.
基金Natural Science Foundation and Education Department Foundation of Guangxi Province
文摘The title zinc(Ⅱ) complex salt [Zn(H2O)6](ClO4)2-(PNOS)4, where PNOS is derived from picolinaldehyde N-oxide with semicarbazone, has been prepared and structurally characterized by X-ray single-crystal analysis. It crystallizes in triclinic, space group PI with a = 7.529(3), b = 10.206(4), c = 14.678(6)A, a = 86.293(6), β= 87.686(7), γ= 81.382(6)°, C28H44Cl2N16O22Zn, Mr = 1093.06, V = 1112.3(8) ,A^3 Z = 1, Dc = 1.632 g/cm^3, S = 1.089, μ(MoKa) = 0.773 mm^-1, F(000) = 564, the final R = 0.0438 and wR = 0.1076 for 3888 independent reflections with Rint = 0.0224. The crystal structure possesses a [Zn(H2O)6]^2+ cation, two ClO4^- anions and four PNOSs. In the crystal structure, Zn^2+ cation is located at the symcenter and coordinated by six water molecules. In [Zn(H2O)6]^2+, an elongate octahedral complex cation, the average Zn-O bond length is 2.087(2) A. There exist a lot of H bonds in the structure, linking the cation [Zn(H2O)6]^2+, anion ClO4^- and PNOS to form a 3D network.
基金Supported by the National Natural Science Foundation of China
文摘Two iron-arene complex photoinitiators with different substituents in arene ligands were synthesized, their activities in initiating photopolymerization of cyclohexene oxide (CHO) were compared with that of IRGACURE 261, a commercialized photoinitiator from Ciba-Geigy. A higher activity was found when the arene ligand was substituted with a stronger electron donating group. For the system initiated by IRGACURE 261 the concentration of active centers in CHO polymerization was determined and it was found that the concentration is maximum at around 35℃. The post (dark) polymerization was significant, the polymerization yield decreased with the increase of irradiation temperature and increased with the increase of post polymerization temperature. The results are interpreted based on the mechanism proposed by Lohse, et al..
文摘The reported X-ray structure and magnetochemical properties of [Mn6O2 (OCPh)10, (CH3CN)4], effectively derived from [NBu4][Mn4O2(O2CPh)9 (H2O)] with equivalent of tren in CH3CN is shown.
基金supported by the National Natural Science Foundation of China (No. 20772042)
文摘A new complex [Cd(H2biim)2(H2O)2]·(ino)2·4H2O (H2biim = 2,2'-biimidazole, ino = isonicotinate-N-oxide) has been prepared and characterized by single-crystal X-ray diffraction analysis, IR and fluorescence spectra analysis. The crystal is of triclinic system, space group P1 with a = 7.5380(6), b = 8.0402(7), c = 13.5094(11) , α = 104.269(1), β = 93.604(1), γ = 98.349(1)°, V = 780.93(11) 3, Mr = 765.00, Dc = 1.627 g/cm3, F(000) = 390, μ = 0.776 mm-1 and Z = 1. The final R = 0.0322 and wR = 0.0825 for 7038 observed reflections with I 2σ(I) and R = 0.0341 and wR = 0.0832 for all data. The title complex exhibits an infinite chain-like structure through bridging isonicotinate-N-oxide. Strong interchain hydrogen bonds between isonicotinate-N-oxide and H2biim result in the robust 3-D supramolecular architecture. Moreover, the complex shows strong photoluminescence with emission maximum at λ = 401 nm upon λex = 330 nm.
基金Supported by the Self-raised Project for the Basic Research for Application of Yunnan Province(2013FZ109)the Follow-up Project of Qujing Normal University for the National Natural Science Foundation(2106512005)+1 种基金the Innovation and Entrepreneurship Project for College Students of Qujing Normal Universitythe Project for Innovation Team of the Applied Chemical Material Preparation of Qujing Normal University(2106531001)
文摘The photocatalytic degradation on the bismuth containing complex oxide was revised in detail including the synthesis and classification of photocatalyts, and then the photocatalytic reaction, scavenger, and the mechanism of reaction. In particular, the perspectives of photocatalytic degradation on the bismuth containing oxide were analyzed in detail.
文摘We report in situ doping of brushite on zinc manganese oxide(ZMO), fabricated by calcining a Mn(II) oxalate‐impregnated metal‐organic framework. The doping process was conducted in com‐bination with the photocatalytic water oxidation reaction which was catalyzed by ZMO in neutral phosphate‐buffered aqueous solution containing [Ru(bpy)3]^2+‐Na2S2O8 and calcium(II) triflate salt, exhibiting greatly enhanced water oxidation performance with optimized turnover frequency of 0.18 mmol(O2) mol(Mn)^(–1) s^(–1). Different analytical techniques indicated that photodeposited calci‐um‐phosphate(CaP) acted as a co‐catalyst to promote the O2 evolution activity of ZMO. This system involved the use of manganese oxide and calcium ion, and the operation was conducted under am‐bient temperature and neutral conditions, thus, it efficiently mimicked the oxygen‐evolving complex in photosystem II.
文摘Hydrotalcites known as anionic clays are found in nature. Hydrotalcites, hydrotalcite-like compounds, and calcined hydrotalcites (as mixed or complex oxides) as highly active, selective catalysts play an important role in many base/catalyzed reactions. Mg/Al hydrotalcite (MAH) as precursor was used to prepare Mg/Al metal complex oxides (MAO), used as epoxidation catalysts in the current research. In this paper, some primary physical and catalytic properties of MAH and MAO were investigated. The results indicated that the qualified MAH (Mg/Al mol ratio of 3) can be achieved when the suspension was crystallized under 80°C for 16h, and after being filtered, dried at 100 °C for 5h in a oven. MAO was prepared by calcining MAH for 4h in a muffle furnace, and calcination temperature was determined to be 500 °C by a differential scanning calorimeter (DSC). Crystal structure and parameters of MAH and MAO were characterized by X/ray diffraction (XRD), good crystal structure was observed and typical peaks of MAH were detected when 2θ was at 11.5 (003), 23.0 (006), 35.0 (009), and 61.0 (110), respectively. The morphology of calcined precursor, i.e. MAO, was investigated with scanning electron microscopy (SEM);the finer lamellar structure and smaller average size of 3μm was observed. Molding research was performed and confirmed by SEM, the results indicated that the surface bulge and cavity with size of several micrometers were increased, which simultaneously suggested the increasing of specific surface area. The catalytic activity of molding MAO was finally examined by using octanol as starting reagent and ethylene oxide as reactant, and narrower molecular distribution was observed comparing with the traditional catalyst-KOH.